氧驱动重建激活锌-空气和燃料电池中空心PdAg纳米管准单钯位。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zongge Li, Wenjie Tian, Kunsheng Hu, Yajie Guo, Xiaotan Tian, Wenjun Kang, Rui Li, Konggang Qu, Lei Wang, Fanpeng Meng, Huayang Zhang, Haibo Li
{"title":"氧驱动重建激活锌-空气和燃料电池中空心PdAg纳米管准单钯位。","authors":"Zongge Li, Wenjie Tian, Kunsheng Hu, Yajie Guo, Xiaotan Tian, Wenjun Kang, Rui Li, Konggang Qu, Lei Wang, Fanpeng Meng, Huayang Zhang, Haibo Li","doi":"10.1002/advs.202509329","DOIUrl":null,"url":null,"abstract":"<p><p>Here, a template-engaged galvanic replacement strategy is developed to construct hollow PdAg alloy nanotubes, where interfacial oxygen drives surface reconstruction and stabilizes quasi-single Pd active sites. The interplay of atomic-scale characterizations and theoretical calculations reveals that the oxygen-induced atomic rearrangement downshifts the Pd d-band center, optimizes the adsorption-desorption energetics of ORR intermediates, and lowers the energy barrier for <sup>*</sup>OH desorption. The optimized Pd<sub>0.30</sub>@Ag catalyst achieves an onset potential of 0.951 V and a half-wave potential of 0.868 V in alkaline media, surpassing commercial Pt/C even at an ultra-low Pd loading (3 wt.%). Furthermore, Pd<sub>0.30</sub>@Ag-based electrodes deliver outstanding performance in both zinc-air batteries (ZABs) and anion-exchange membrane fuel cells (AEMFCs), demonstrating high power densities, excellent cycling stability, and strong potential for scalable platinum-free energy conversion devices. This work provides a general strategy for engineering interface-confined active sites through surface reconstruction, offering new insights into the rational design of next-generation electrocatalysts.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e09329"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen-Driven Reconstruction Activates Quasi-Single Pd Sites in Hollow PdAg Nanotubes for Zinc-Air and Fuel Cells.\",\"authors\":\"Zongge Li, Wenjie Tian, Kunsheng Hu, Yajie Guo, Xiaotan Tian, Wenjun Kang, Rui Li, Konggang Qu, Lei Wang, Fanpeng Meng, Huayang Zhang, Haibo Li\",\"doi\":\"10.1002/advs.202509329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here, a template-engaged galvanic replacement strategy is developed to construct hollow PdAg alloy nanotubes, where interfacial oxygen drives surface reconstruction and stabilizes quasi-single Pd active sites. The interplay of atomic-scale characterizations and theoretical calculations reveals that the oxygen-induced atomic rearrangement downshifts the Pd d-band center, optimizes the adsorption-desorption energetics of ORR intermediates, and lowers the energy barrier for <sup>*</sup>OH desorption. The optimized Pd<sub>0.30</sub>@Ag catalyst achieves an onset potential of 0.951 V and a half-wave potential of 0.868 V in alkaline media, surpassing commercial Pt/C even at an ultra-low Pd loading (3 wt.%). Furthermore, Pd<sub>0.30</sub>@Ag-based electrodes deliver outstanding performance in both zinc-air batteries (ZABs) and anion-exchange membrane fuel cells (AEMFCs), demonstrating high power densities, excellent cycling stability, and strong potential for scalable platinum-free energy conversion devices. This work provides a general strategy for engineering interface-confined active sites through surface reconstruction, offering new insights into the rational design of next-generation electrocatalysts.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e09329\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202509329\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202509329","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们开发了一种模板参与的电替换策略来构建空心PdAg合金纳米管,其中界面氧驱动表面重建并稳定准单Pd活性位点。原子尺度表征和理论计算的相互作用表明,氧诱导的原子重排降低了Pd -带中心,优化了ORR中间体的吸附-脱附能量,降低了*OH脱附的能垒。优化后的Pd0.30@Ag催化剂在碱性介质中的起始电位为0.951 V,半波电位为0.868 V,即使在超低Pd负载(3 wt.%)下也超过了商用Pt/C。此外,Pd0.30@Ag-based电极在锌空气电池(ZABs)和阴离子交换膜燃料电池(aemfc)中都具有出色的性能,具有高功率密度,优异的循环稳定性,以及可扩展的无铂能量转换设备的强大潜力。这项工作通过表面重建为工程界面限制活性位点提供了一般策略,为下一代电催化剂的合理设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxygen-Driven Reconstruction Activates Quasi-Single Pd Sites in Hollow PdAg Nanotubes for Zinc-Air and Fuel Cells.

Here, a template-engaged galvanic replacement strategy is developed to construct hollow PdAg alloy nanotubes, where interfacial oxygen drives surface reconstruction and stabilizes quasi-single Pd active sites. The interplay of atomic-scale characterizations and theoretical calculations reveals that the oxygen-induced atomic rearrangement downshifts the Pd d-band center, optimizes the adsorption-desorption energetics of ORR intermediates, and lowers the energy barrier for *OH desorption. The optimized Pd0.30@Ag catalyst achieves an onset potential of 0.951 V and a half-wave potential of 0.868 V in alkaline media, surpassing commercial Pt/C even at an ultra-low Pd loading (3 wt.%). Furthermore, Pd0.30@Ag-based electrodes deliver outstanding performance in both zinc-air batteries (ZABs) and anion-exchange membrane fuel cells (AEMFCs), demonstrating high power densities, excellent cycling stability, and strong potential for scalable platinum-free energy conversion devices. This work provides a general strategy for engineering interface-confined active sites through surface reconstruction, offering new insights into the rational design of next-generation electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信