Kevin A Green, Anuja S Kulkarni, Penelope E Jankoski, Rachel M Worden, Bayleigh M Loving, Blaine Derbigny, Tristan D Clemons, Davita L Watkins, Sarah E Morgan
{"title":"糖结构对两亲性糖共聚物-聚乳酸嵌段共聚物纳米颗粒载货量、热性能和凝集素结合的影响","authors":"Kevin A Green, Anuja S Kulkarni, Penelope E Jankoski, Rachel M Worden, Bayleigh M Loving, Blaine Derbigny, Tristan D Clemons, Davita L Watkins, Sarah E Morgan","doi":"10.1021/acs.bioconjchem.5c00217","DOIUrl":null,"url":null,"abstract":"<p><p>Stereospecific arrangements of saccharide molecules control biological recognition and binding with proteins. These properties can also be utilized in the design of biomaterials for applications such as polymeric drug delivery, where saccharides may enhance the ability to target specific cells. Glycopolymer block copolymers incorporating pendant saccharides at high concentration have potential for use in applications; however, there is a need for further evaluation of their structure-property relationships. Accordingly, noncytotoxic amphiphilic, hybrid block copolymers (HBCs), synthesized by coupling branched polylactic acid (PLA) with linear polyacrylamides containing hydroxyethyl, β-d-glucose, or β-d-galactose moieties, were studied to determine the influence of the stereochemistry and structure of the pendant saccharide on nanoparticle formation, cargo loading, and lectin binding properties. HBCs were prepared at a target 50:50 PLA/hydrophilic block content; all compositions yielded similar spherical nanoparticle morphologies with comparable diameters on nanoprecipitation. Thermal properties and hydrophilic dye loading levels, however, were dependent on the pendant saccharide structure, attributed to differences in intramolecular interactions in the glycopolymer blocks. These findings demonstrate the importance of understanding the structure-dependent behavior for designing HBC-based therapies.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the Saccharide Structure on Cargo Loading, Thermal Properties, and Lectin Binding of Amphiphilic Glycopolymer-Polylactic Acid Block Copolymer Nanoparticles.\",\"authors\":\"Kevin A Green, Anuja S Kulkarni, Penelope E Jankoski, Rachel M Worden, Bayleigh M Loving, Blaine Derbigny, Tristan D Clemons, Davita L Watkins, Sarah E Morgan\",\"doi\":\"10.1021/acs.bioconjchem.5c00217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stereospecific arrangements of saccharide molecules control biological recognition and binding with proteins. These properties can also be utilized in the design of biomaterials for applications such as polymeric drug delivery, where saccharides may enhance the ability to target specific cells. Glycopolymer block copolymers incorporating pendant saccharides at high concentration have potential for use in applications; however, there is a need for further evaluation of their structure-property relationships. Accordingly, noncytotoxic amphiphilic, hybrid block copolymers (HBCs), synthesized by coupling branched polylactic acid (PLA) with linear polyacrylamides containing hydroxyethyl, β-d-glucose, or β-d-galactose moieties, were studied to determine the influence of the stereochemistry and structure of the pendant saccharide on nanoparticle formation, cargo loading, and lectin binding properties. HBCs were prepared at a target 50:50 PLA/hydrophilic block content; all compositions yielded similar spherical nanoparticle morphologies with comparable diameters on nanoprecipitation. Thermal properties and hydrophilic dye loading levels, however, were dependent on the pendant saccharide structure, attributed to differences in intramolecular interactions in the glycopolymer blocks. These findings demonstrate the importance of understanding the structure-dependent behavior for designing HBC-based therapies.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.5c00217\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00217","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Influence of the Saccharide Structure on Cargo Loading, Thermal Properties, and Lectin Binding of Amphiphilic Glycopolymer-Polylactic Acid Block Copolymer Nanoparticles.
Stereospecific arrangements of saccharide molecules control biological recognition and binding with proteins. These properties can also be utilized in the design of biomaterials for applications such as polymeric drug delivery, where saccharides may enhance the ability to target specific cells. Glycopolymer block copolymers incorporating pendant saccharides at high concentration have potential for use in applications; however, there is a need for further evaluation of their structure-property relationships. Accordingly, noncytotoxic amphiphilic, hybrid block copolymers (HBCs), synthesized by coupling branched polylactic acid (PLA) with linear polyacrylamides containing hydroxyethyl, β-d-glucose, or β-d-galactose moieties, were studied to determine the influence of the stereochemistry and structure of the pendant saccharide on nanoparticle formation, cargo loading, and lectin binding properties. HBCs were prepared at a target 50:50 PLA/hydrophilic block content; all compositions yielded similar spherical nanoparticle morphologies with comparable diameters on nanoprecipitation. Thermal properties and hydrophilic dye loading levels, however, were dependent on the pendant saccharide structure, attributed to differences in intramolecular interactions in the glycopolymer blocks. These findings demonstrate the importance of understanding the structure-dependent behavior for designing HBC-based therapies.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.