David Chojniak, Alexandra Schmid, Jochen Hohl-Ebinger, Gerald Siefer, Stefan W. Glunz
{"title":"硅串联模块上大面积钙钛矿的可追溯效率测定-从校准实验室的角度来看","authors":"David Chojniak, Alexandra Schmid, Jochen Hohl-Ebinger, Gerald Siefer, Stefan W. Glunz","doi":"10.1002/pip.3928","DOIUrl":null,"url":null,"abstract":"<p>As the perovskite on silicon solar cell technology strives towards commercialization, the need to produce large-area devices increases and so does the necessity to traceably determine their efficiency. However, suitable measurement procedures and consequently efficiencies of such devices are rarely published. Due to metastability and the two-terminal tandem architecture, high demands are set on measurement procedures and the equipment used. In this publication, we present a measurement procedure which is fully built on a light emitting diode (LED)-based solar simulator. Besides power measurements, the procedure includes a full module EQE measurement, determination of temperature coefficients as well as investigations under various spectral conditions. We therefore present an approach to conduct a complete tandem module calibration using a single measurement setup by utilizing the spectral variability of the LED solar simulator. The introduced procedure is exemplarily carried out on a large-area perovskite on silicon tandem module which achieves an efficiency of 25%.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 8","pages":"815-827"},"PeriodicalIF":8.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3928","citationCount":"0","resultStr":"{\"title\":\"Traceable Efficiency Determination of Large-Area Perovskite on Silicon Tandem Modules—Insights From a Calibration Laboratories Perspective\",\"authors\":\"David Chojniak, Alexandra Schmid, Jochen Hohl-Ebinger, Gerald Siefer, Stefan W. Glunz\",\"doi\":\"10.1002/pip.3928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the perovskite on silicon solar cell technology strives towards commercialization, the need to produce large-area devices increases and so does the necessity to traceably determine their efficiency. However, suitable measurement procedures and consequently efficiencies of such devices are rarely published. Due to metastability and the two-terminal tandem architecture, high demands are set on measurement procedures and the equipment used. In this publication, we present a measurement procedure which is fully built on a light emitting diode (LED)-based solar simulator. Besides power measurements, the procedure includes a full module EQE measurement, determination of temperature coefficients as well as investigations under various spectral conditions. We therefore present an approach to conduct a complete tandem module calibration using a single measurement setup by utilizing the spectral variability of the LED solar simulator. The introduced procedure is exemplarily carried out on a large-area perovskite on silicon tandem module which achieves an efficiency of 25%.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 8\",\"pages\":\"815-827\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3928\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3928\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3928","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Traceable Efficiency Determination of Large-Area Perovskite on Silicon Tandem Modules—Insights From a Calibration Laboratories Perspective
As the perovskite on silicon solar cell technology strives towards commercialization, the need to produce large-area devices increases and so does the necessity to traceably determine their efficiency. However, suitable measurement procedures and consequently efficiencies of such devices are rarely published. Due to metastability and the two-terminal tandem architecture, high demands are set on measurement procedures and the equipment used. In this publication, we present a measurement procedure which is fully built on a light emitting diode (LED)-based solar simulator. Besides power measurements, the procedure includes a full module EQE measurement, determination of temperature coefficients as well as investigations under various spectral conditions. We therefore present an approach to conduct a complete tandem module calibration using a single measurement setup by utilizing the spectral variability of the LED solar simulator. The introduced procedure is exemplarily carried out on a large-area perovskite on silicon tandem module which achieves an efficiency of 25%.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.