Buddhika S. A. Gedara, Peter S. Rice, Prescott E. Evans, Daniel Baranowski, Marcus A. Sharp, Tom Autrey, Bojana Ginovska, Zdenek Dohnálek, Zbynek Novotny
{"title":"Ru(0001)上石墨烯中石墨氮和吡啶氮的热力学稳定性和位置分布","authors":"Buddhika S. A. Gedara, Peter S. Rice, Prescott E. Evans, Daniel Baranowski, Marcus A. Sharp, Tom Autrey, Bojana Ginovska, Zdenek Dohnálek, Zbynek Novotny","doi":"10.1002/admi.202500142","DOIUrl":null,"url":null,"abstract":"<p>Graphene-like materials are of interest for large-scale hydrogen storage applications due to their lightweight, durable, and scalable properties. Nitrogen-doping minimizes kinetic limitations in diffusion and recombination on surfaces, however, the role of graphitic nitrogen (GN) and pyridinic nitrogen (PN) is not well understood. Nitrogen-doped graphene is synthesized on Ru(0001) using chemical vapor deposition (CVD) of pyridine and ion irradiation. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) are used to identify the structure, location, and thermodynamic stability of nitrogen species within the graphene moiré. CVD of pyridine results in a low nitrogen concentration (<0.1at%), while the post-growth nitrogen ion irradiation allows us to increase the concentration further. The concentration of GN and PN is controlled by varying the ion dose and annealing temperature. Comparison of measured and simulated STM images of GN and PN yield an excellent agreement, allowing us to confidently establish that GN is preferentially located near the center of the Atop region, while PN is located in the valley region of the graphene moiré. This report explicitly confirms the site assignments and provides a foundation for the site synthesis and analysis of structural and electronic properties that drive the reactivity of N-doped graphene.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 13","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500142","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Stability and Site-Specific Distribution of Graphitic and Pyridinic Nitrogen in Graphene Moiré on Ru(0001)\",\"authors\":\"Buddhika S. A. Gedara, Peter S. Rice, Prescott E. Evans, Daniel Baranowski, Marcus A. Sharp, Tom Autrey, Bojana Ginovska, Zdenek Dohnálek, Zbynek Novotny\",\"doi\":\"10.1002/admi.202500142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Graphene-like materials are of interest for large-scale hydrogen storage applications due to their lightweight, durable, and scalable properties. Nitrogen-doping minimizes kinetic limitations in diffusion and recombination on surfaces, however, the role of graphitic nitrogen (GN) and pyridinic nitrogen (PN) is not well understood. Nitrogen-doped graphene is synthesized on Ru(0001) using chemical vapor deposition (CVD) of pyridine and ion irradiation. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) are used to identify the structure, location, and thermodynamic stability of nitrogen species within the graphene moiré. CVD of pyridine results in a low nitrogen concentration (<0.1at%), while the post-growth nitrogen ion irradiation allows us to increase the concentration further. The concentration of GN and PN is controlled by varying the ion dose and annealing temperature. Comparison of measured and simulated STM images of GN and PN yield an excellent agreement, allowing us to confidently establish that GN is preferentially located near the center of the Atop region, while PN is located in the valley region of the graphene moiré. This report explicitly confirms the site assignments and provides a foundation for the site synthesis and analysis of structural and electronic properties that drive the reactivity of N-doped graphene.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 13\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500142\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500142","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermodynamic Stability and Site-Specific Distribution of Graphitic and Pyridinic Nitrogen in Graphene Moiré on Ru(0001)
Graphene-like materials are of interest for large-scale hydrogen storage applications due to their lightweight, durable, and scalable properties. Nitrogen-doping minimizes kinetic limitations in diffusion and recombination on surfaces, however, the role of graphitic nitrogen (GN) and pyridinic nitrogen (PN) is not well understood. Nitrogen-doped graphene is synthesized on Ru(0001) using chemical vapor deposition (CVD) of pyridine and ion irradiation. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) are used to identify the structure, location, and thermodynamic stability of nitrogen species within the graphene moiré. CVD of pyridine results in a low nitrogen concentration (<0.1at%), while the post-growth nitrogen ion irradiation allows us to increase the concentration further. The concentration of GN and PN is controlled by varying the ion dose and annealing temperature. Comparison of measured and simulated STM images of GN and PN yield an excellent agreement, allowing us to confidently establish that GN is preferentially located near the center of the Atop region, while PN is located in the valley region of the graphene moiré. This report explicitly confirms the site assignments and provides a foundation for the site synthesis and analysis of structural and electronic properties that drive the reactivity of N-doped graphene.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.