Fionn Carman, Fernando Bresme, Billy Wu, Daniele Dini, James P. Ewen
{"title":"水纳米膜介导赤铁矿-碳氢化合物界面的粘附和传热","authors":"Fionn Carman, Fernando Bresme, Billy Wu, Daniele Dini, James P. Ewen","doi":"10.1002/admi.202500267","DOIUrl":null,"url":null,"abstract":"<p>A detailed understanding of nanoscale heat transport at metal oxide-hydrocarbon interfaces is critical for many applications that require efficient thermal management. Under ambient conditions, water nanofilms are expected to form at these interfaces, but these are rarely accounted for in simulations. Using molecular dynamics simulations, it is shown that water nanofilms at the hydroxylated hematite/poly-α-olefin (PAO) interface significantly affect wettability and thermal transport. Including water nanofilms improves agreement with experimental work of adhesion, which cannot be replicated with anhydrous systems using realistic solid–liquid interactions. For water films thicker than one monolayer, interfacial thermal resistance (ITR) converges to a consistent value, independent of solid–liquid interaction strength. This value is dominated by the ITR at the water/PAO interface. The ITR at the water/PAO interface is dependent on the surface area between the water film and the PAO and the magnitude of the interfacial potential. These simulations provide a more precise estimate of ITR at the hematite/PAO interface by accounting for surface hydration expected in experiments under ambient conditions. This study offers crucial insights into the roles of surface hydroxylation and water nanofilms in controlling wettability and thermal transport at industrially important interfaces.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 13","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500267","citationCount":"0","resultStr":"{\"title\":\"Water Nanofilms Mediate Adhesion and Heat Transfer at Hematite-Hydrocarbon Interfaces\",\"authors\":\"Fionn Carman, Fernando Bresme, Billy Wu, Daniele Dini, James P. Ewen\",\"doi\":\"10.1002/admi.202500267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A detailed understanding of nanoscale heat transport at metal oxide-hydrocarbon interfaces is critical for many applications that require efficient thermal management. Under ambient conditions, water nanofilms are expected to form at these interfaces, but these are rarely accounted for in simulations. Using molecular dynamics simulations, it is shown that water nanofilms at the hydroxylated hematite/poly-α-olefin (PAO) interface significantly affect wettability and thermal transport. Including water nanofilms improves agreement with experimental work of adhesion, which cannot be replicated with anhydrous systems using realistic solid–liquid interactions. For water films thicker than one monolayer, interfacial thermal resistance (ITR) converges to a consistent value, independent of solid–liquid interaction strength. This value is dominated by the ITR at the water/PAO interface. The ITR at the water/PAO interface is dependent on the surface area between the water film and the PAO and the magnitude of the interfacial potential. These simulations provide a more precise estimate of ITR at the hematite/PAO interface by accounting for surface hydration expected in experiments under ambient conditions. This study offers crucial insights into the roles of surface hydroxylation and water nanofilms in controlling wettability and thermal transport at industrially important interfaces.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 13\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500267\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500267\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500267","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Water Nanofilms Mediate Adhesion and Heat Transfer at Hematite-Hydrocarbon Interfaces
A detailed understanding of nanoscale heat transport at metal oxide-hydrocarbon interfaces is critical for many applications that require efficient thermal management. Under ambient conditions, water nanofilms are expected to form at these interfaces, but these are rarely accounted for in simulations. Using molecular dynamics simulations, it is shown that water nanofilms at the hydroxylated hematite/poly-α-olefin (PAO) interface significantly affect wettability and thermal transport. Including water nanofilms improves agreement with experimental work of adhesion, which cannot be replicated with anhydrous systems using realistic solid–liquid interactions. For water films thicker than one monolayer, interfacial thermal resistance (ITR) converges to a consistent value, independent of solid–liquid interaction strength. This value is dominated by the ITR at the water/PAO interface. The ITR at the water/PAO interface is dependent on the surface area between the water film and the PAO and the magnitude of the interfacial potential. These simulations provide a more precise estimate of ITR at the hematite/PAO interface by accounting for surface hydration expected in experiments under ambient conditions. This study offers crucial insights into the roles of surface hydroxylation and water nanofilms in controlling wettability and thermal transport at industrially important interfaces.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.