Karamullah Eisawi, Elham Loni, Saehwa Chong, Martin Liezers, Ming Tang, Kyle S. Brinkman, Brian J. Riley, Michael Naguib
{"title":"银- mxene纳米杂化材料:一种有前途的核废料碘气体捕集剂。接口13/2025)","authors":"Karamullah Eisawi, Elham Loni, Saehwa Chong, Martin Liezers, Ming Tang, Kyle S. Brinkman, Brian J. Riley, Michael Naguib","doi":"10.1002/admi.70056","DOIUrl":null,"url":null,"abstract":"<p><b>Silver-MXene Nanohybrid for Iodine Gas Capture</b></p><p>In article 2500011, Michael Naguib and co-workers report the synthesis of silver-MXene nanohybrids and demonstrate their use for iodine gas capture at 150 °C. The material achieves an iodine uptake of 946 mg·g<sup>−1</sup>, outperforming conventional silver-based sorbents. The formation of thermally stable silver iodide is confirmed, underscoring the potential of MXene hybrids as effective sorbents for radioiodine and nuclear off-gas capture applications.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 13","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.70056","citationCount":"0","resultStr":"{\"title\":\"Nanohybrid of Silver-MXene: A Promising Sorbent for Iodine Gas Capture from Nuclear Waste (Adv. Mater. Interfaces 13/2025)\",\"authors\":\"Karamullah Eisawi, Elham Loni, Saehwa Chong, Martin Liezers, Ming Tang, Kyle S. Brinkman, Brian J. Riley, Michael Naguib\",\"doi\":\"10.1002/admi.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Silver-MXene Nanohybrid for Iodine Gas Capture</b></p><p>In article 2500011, Michael Naguib and co-workers report the synthesis of silver-MXene nanohybrids and demonstrate their use for iodine gas capture at 150 °C. The material achieves an iodine uptake of 946 mg·g<sup>−1</sup>, outperforming conventional silver-based sorbents. The formation of thermally stable silver iodide is confirmed, underscoring the potential of MXene hybrids as effective sorbents for radioiodine and nuclear off-gas capture applications.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 13\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.70056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.70056\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.70056","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanohybrid of Silver-MXene: A Promising Sorbent for Iodine Gas Capture from Nuclear Waste (Adv. Mater. Interfaces 13/2025)
Silver-MXene Nanohybrid for Iodine Gas Capture
In article 2500011, Michael Naguib and co-workers report the synthesis of silver-MXene nanohybrids and demonstrate their use for iodine gas capture at 150 °C. The material achieves an iodine uptake of 946 mg·g−1, outperforming conventional silver-based sorbents. The formation of thermally stable silver iodide is confirmed, underscoring the potential of MXene hybrids as effective sorbents for radioiodine and nuclear off-gas capture applications.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.