Amun Jarzembski, Siddharth Nair, Wyatt Hodges, Matthew Jordan, Anthony McDonald, Logan Antiporda, Greg W. Pickrell, Timothy Walsh, Fabio Semperlotti, Jason Neely, Luke Yates
{"title":"基于频域热反射和深度神经网络特征重构的宽场键合质量评价。接口13/2025)","authors":"Amun Jarzembski, Siddharth Nair, Wyatt Hodges, Matthew Jordan, Anthony McDonald, Logan Antiporda, Greg W. Pickrell, Timothy Walsh, Fabio Semperlotti, Jason Neely, Luke Yates","doi":"10.1002/admi.70057","DOIUrl":null,"url":null,"abstract":"<p><b>Wide-Field Frequency Domain Thermoreflectance</b></p><p>Wide-field (≥1 mm<sup>2</sup>) frequency-domain thermoreflectance hyperspectral imaging is used to image subsurface indium bump bonds 50 μm below the surface. Thermal analysis enables evaluation of bump quality in a surrogate heterogeneously integrated microelectronic. More details can be found in article 2401039 by Amun Jarzembski, Fabio Semperlotti, and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 13","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.70057","citationCount":"0","resultStr":"{\"title\":\"Wide-Field Bond Quality Evaluation Using Frequency Domain Thermoreflectance with Deep Neural Network Feature Reconstruction (Adv. Mater. Interfaces 13/2025)\",\"authors\":\"Amun Jarzembski, Siddharth Nair, Wyatt Hodges, Matthew Jordan, Anthony McDonald, Logan Antiporda, Greg W. Pickrell, Timothy Walsh, Fabio Semperlotti, Jason Neely, Luke Yates\",\"doi\":\"10.1002/admi.70057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Wide-Field Frequency Domain Thermoreflectance</b></p><p>Wide-field (≥1 mm<sup>2</sup>) frequency-domain thermoreflectance hyperspectral imaging is used to image subsurface indium bump bonds 50 μm below the surface. Thermal analysis enables evaluation of bump quality in a surrogate heterogeneously integrated microelectronic. More details can be found in article 2401039 by Amun Jarzembski, Fabio Semperlotti, and co-workers.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 13\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.70057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.70057\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.70057","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Wide-Field Bond Quality Evaluation Using Frequency Domain Thermoreflectance with Deep Neural Network Feature Reconstruction (Adv. Mater. Interfaces 13/2025)
Wide-Field Frequency Domain Thermoreflectance
Wide-field (≥1 mm2) frequency-domain thermoreflectance hyperspectral imaging is used to image subsurface indium bump bonds 50 μm below the surface. Thermal analysis enables evaluation of bump quality in a surrogate heterogeneously integrated microelectronic. More details can be found in article 2401039 by Amun Jarzembski, Fabio Semperlotti, and co-workers.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.