一种新的有限元分析辅助多目标形状优化方法用于髋关节假体中无水泥股骨假体

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Mohammad Ali Yazdi, Siavash Kazemirad
{"title":"一种新的有限元分析辅助多目标形状优化方法用于髋关节假体中无水泥股骨假体","authors":"Mohammad Ali Yazdi,&nbsp;Siavash Kazemirad","doi":"10.1002/cnm.70049","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The purpose of this study was to propose a multiobjective shape optimization approach using the MOPSO algorithm for the femoral stems with the aim of increasing the long-term survivorship of hip implants. The Taperloc Complete femoral stem was selected and its reference geometry was defined with 67 variables. 10 new stem shapes were produced as the swarm members by randomly changing the values of the variables. The values of the stress shielding, initial relative micro-motion, and bone-implant interface stress for each stem shape were calculated as the objectives by the finite element analysis and the position of each swarm member was updated iteratively. The geometry that caused a 37% and 45% decrease in the interface stress and stress shielding, respectively, and a 65% increase in the initial micro-motion compared to the Taperloc Complete stem was selected as the optimized shape. It was shown that thinning the femoral stems without changing their length reduced the induced stress shielding and initial micro-motion and increased the interface stress, whereas shortening the femoral stems reduced the stress shielding and interface stress and increased the initial micro-motion. The proposed approach may be used for the shape optimization of commercial femoral stems to increase their lifetime.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 7","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Finite Element Analysis Aided Multiobjective Shape Optimization Approach for Cementless Femoral Components in Hip Implants\",\"authors\":\"Mohammad Ali Yazdi,&nbsp;Siavash Kazemirad\",\"doi\":\"10.1002/cnm.70049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The purpose of this study was to propose a multiobjective shape optimization approach using the MOPSO algorithm for the femoral stems with the aim of increasing the long-term survivorship of hip implants. The Taperloc Complete femoral stem was selected and its reference geometry was defined with 67 variables. 10 new stem shapes were produced as the swarm members by randomly changing the values of the variables. The values of the stress shielding, initial relative micro-motion, and bone-implant interface stress for each stem shape were calculated as the objectives by the finite element analysis and the position of each swarm member was updated iteratively. The geometry that caused a 37% and 45% decrease in the interface stress and stress shielding, respectively, and a 65% increase in the initial micro-motion compared to the Taperloc Complete stem was selected as the optimized shape. It was shown that thinning the femoral stems without changing their length reduced the induced stress shielding and initial micro-motion and increased the interface stress, whereas shortening the femoral stems reduced the stress shielding and interface stress and increased the initial micro-motion. The proposed approach may be used for the shape optimization of commercial femoral stems to increase their lifetime.</p>\\n </div>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 7\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70049\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是提出一种多目标形状优化方法,使用MOPSO算法对股骨柄进行优化,目的是增加髋关节植入物的长期存活率。选择Taperloc全股骨干,用67个变量定义其参考几何形状。通过随机改变变量的值,产生10个新的茎形作为群成员。通过有限元分析,计算出各杆形的应力屏蔽值、初始相对微运动值和骨-种植体界面应力值,并迭代更新各群成员的位置。与Taperloc Complete杆相比,该几何形状可使界面应力和应力屏蔽分别降低37%和45%,初始微运动增加65%。结果表明,在不改变股骨柄长度的情况下,股骨柄变细可减少应力屏蔽和初始微动,增加界面应力;股骨柄变短可减少应力屏蔽和界面应力,增加初始微动。该方法可用于商用股骨干的形状优化,以延长其使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Novel Finite Element Analysis Aided Multiobjective Shape Optimization Approach for Cementless Femoral Components in Hip Implants

A Novel Finite Element Analysis Aided Multiobjective Shape Optimization Approach for Cementless Femoral Components in Hip Implants

The purpose of this study was to propose a multiobjective shape optimization approach using the MOPSO algorithm for the femoral stems with the aim of increasing the long-term survivorship of hip implants. The Taperloc Complete femoral stem was selected and its reference geometry was defined with 67 variables. 10 new stem shapes were produced as the swarm members by randomly changing the values of the variables. The values of the stress shielding, initial relative micro-motion, and bone-implant interface stress for each stem shape were calculated as the objectives by the finite element analysis and the position of each swarm member was updated iteratively. The geometry that caused a 37% and 45% decrease in the interface stress and stress shielding, respectively, and a 65% increase in the initial micro-motion compared to the Taperloc Complete stem was selected as the optimized shape. It was shown that thinning the femoral stems without changing their length reduced the induced stress shielding and initial micro-motion and increased the interface stress, whereas shortening the femoral stems reduced the stress shielding and interface stress and increased the initial micro-motion. The proposed approach may be used for the shape optimization of commercial femoral stems to increase their lifetime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信