热带气旋的湍流:从转流到反流

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Boris Galperin, Alexander K. Nickerson, Gregory P. King, Jun A. Zhang
{"title":"热带气旋的湍流:从转流到反流","authors":"Boris Galperin,&nbsp;Alexander K. Nickerson,&nbsp;Gregory P. King,&nbsp;Jun A. Zhang","doi":"10.1029/2024JD042733","DOIUrl":null,"url":null,"abstract":"<p>Cyclostrophic rotation in the core region of tropical cyclones (TCs) imprints a distinct signature upon their turbulence structure. Its intensity is characterized by the radius of maximum wind, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>m</mi>\n <mi>w</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${R}_{mw}$</annotation>\n </semantics></math>, and the azimuthal wind velocity at that radius, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>U</mi>\n <mrow>\n <mi>m</mi>\n <mi>a</mi>\n <mi>x</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${U}_{max}$</annotation>\n </semantics></math>. The corresponding cyclostrophic Coriolis parameter, <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>ˆ</mo>\n </mover>\n <mo>=</mo>\n <mn>2</mn>\n <msub>\n <mi>U</mi>\n <mrow>\n <mi>m</mi>\n <mi>a</mi>\n <mi>x</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> $\\widehat{f}=2{U}_{max}$</annotation>\n </semantics></math>/<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>m</mi>\n <mi>w</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${R}_{mw}$</annotation>\n </semantics></math>, far exceeds its planetary counterpart, <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n </mrow>\n <annotation> $f$</annotation>\n </semantics></math>, for all storms; its impact increases with storm intensity. The vortex can be thought of as a system undergoing a superposition of planetary and cyclostrophic rotations represented by the effective Coriolis parameter, <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>∼</mo>\n </mover>\n <mo>=</mo>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>ˆ</mo>\n </mover>\n </mrow>\n <mo>+</mo>\n <mi>f</mi>\n </mrow>\n <annotation> $\\tilde{f}=\\widehat{f}+f$</annotation>\n </semantics></math>. On the vortex periphery, <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>∼</mo>\n </mover>\n </mrow>\n <annotation> $\\tilde{f}$</annotation>\n </semantics></math> merges with <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n </mrow>\n <annotation> $f$</annotation>\n </semantics></math>. In the classical Rankine vortex model, the inner region undergoes solid-body rotation rendering <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>ˆ</mo>\n </mover>\n </mrow>\n <annotation> $\\widehat{f}$</annotation>\n </semantics></math> constant. In a more realistic representation, <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>ˆ</mo>\n </mover>\n </mrow>\n <annotation> $\\widehat{f}$</annotation>\n </semantics></math> is not constant, and the ensuing cyclostrophic <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation> $\\beta $</annotation>\n </semantics></math>-effect sustains vortex Rossby waves. Horizontal turbulence in such a system can be quantified by a two-dimensional anisotropic spectrum. An alternative description is provided by one-dimensional, longitudinal, and transverse spectra computed along the radial direction. For rotating turbulence with vortex Rossby waves, the spectra divulge a coexistence of three ranges: Kolmogorov, peristrophic (spectral amplitudes are proportional to <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mover>\n <mi>f</mi>\n <mo>∼</mo>\n </mover>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${\\tilde{f}}^{2}$</annotation>\n </semantics></math>), and zonostrophic (transverse spectrum amplitude is proportional to <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mover>\n <mi>β</mi>\n <mo>ˆ</mo>\n </mover>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${\\widehat{\\beta }}^{2}$</annotation>\n </semantics></math>). A comprehensive database of TC winds collected by reconnaissance airplanes reveals that with increasing storm intensity, their cyclostrophic turbulence evolves from purely peristrophic to mixed peristrophic-zonostrophic to predominantly zonostrophic. The latter is akin to the flow regime harboring zonal jets on fast rotating giant planets. The eyewall of TCs is an equivalent of an eastward zonal jet.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 14","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042733","citationCount":"0","resultStr":"{\"title\":\"Turbulence of Tropical Cyclones: From Peristrophic to Zonostrophic\",\"authors\":\"Boris Galperin,&nbsp;Alexander K. Nickerson,&nbsp;Gregory P. King,&nbsp;Jun A. Zhang\",\"doi\":\"10.1029/2024JD042733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cyclostrophic rotation in the core region of tropical cyclones (TCs) imprints a distinct signature upon their turbulence structure. Its intensity is characterized by the radius of maximum wind, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>m</mi>\\n <mi>w</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${R}_{mw}$</annotation>\\n </semantics></math>, and the azimuthal wind velocity at that radius, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>U</mi>\\n <mrow>\\n <mi>m</mi>\\n <mi>a</mi>\\n <mi>x</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${U}_{max}$</annotation>\\n </semantics></math>. The corresponding cyclostrophic Coriolis parameter, <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>ˆ</mo>\\n </mover>\\n <mo>=</mo>\\n <mn>2</mn>\\n <msub>\\n <mi>U</mi>\\n <mrow>\\n <mi>m</mi>\\n <mi>a</mi>\\n <mi>x</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> $\\\\widehat{f}=2{U}_{max}$</annotation>\\n </semantics></math>/<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>m</mi>\\n <mi>w</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${R}_{mw}$</annotation>\\n </semantics></math>, far exceeds its planetary counterpart, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <annotation> $f$</annotation>\\n </semantics></math>, for all storms; its impact increases with storm intensity. The vortex can be thought of as a system undergoing a superposition of planetary and cyclostrophic rotations represented by the effective Coriolis parameter, <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>∼</mo>\\n </mover>\\n <mo>=</mo>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>ˆ</mo>\\n </mover>\\n </mrow>\\n <mo>+</mo>\\n <mi>f</mi>\\n </mrow>\\n <annotation> $\\\\tilde{f}=\\\\widehat{f}+f$</annotation>\\n </semantics></math>. On the vortex periphery, <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>∼</mo>\\n </mover>\\n </mrow>\\n <annotation> $\\\\tilde{f}$</annotation>\\n </semantics></math> merges with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <annotation> $f$</annotation>\\n </semantics></math>. In the classical Rankine vortex model, the inner region undergoes solid-body rotation rendering <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>ˆ</mo>\\n </mover>\\n </mrow>\\n <annotation> $\\\\widehat{f}$</annotation>\\n </semantics></math> constant. In a more realistic representation, <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>ˆ</mo>\\n </mover>\\n </mrow>\\n <annotation> $\\\\widehat{f}$</annotation>\\n </semantics></math> is not constant, and the ensuing cyclostrophic <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <annotation> $\\\\beta $</annotation>\\n </semantics></math>-effect sustains vortex Rossby waves. Horizontal turbulence in such a system can be quantified by a two-dimensional anisotropic spectrum. An alternative description is provided by one-dimensional, longitudinal, and transverse spectra computed along the radial direction. For rotating turbulence with vortex Rossby waves, the spectra divulge a coexistence of three ranges: Kolmogorov, peristrophic (spectral amplitudes are proportional to <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mover>\\n <mi>f</mi>\\n <mo>∼</mo>\\n </mover>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\tilde{f}}^{2}$</annotation>\\n </semantics></math>), and zonostrophic (transverse spectrum amplitude is proportional to <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mover>\\n <mi>β</mi>\\n <mo>ˆ</mo>\\n </mover>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\widehat{\\\\beta }}^{2}$</annotation>\\n </semantics></math>). A comprehensive database of TC winds collected by reconnaissance airplanes reveals that with increasing storm intensity, their cyclostrophic turbulence evolves from purely peristrophic to mixed peristrophic-zonostrophic to predominantly zonostrophic. The latter is akin to the flow regime harboring zonal jets on fast rotating giant planets. The eyewall of TCs is an equivalent of an eastward zonal jet.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"130 14\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042733\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042733\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042733","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

热带气旋核心区的旋转旋转在其湍流结构上留下了明显的印记。其强度表征为最大风半径R m w ${R}_{mw}$和该半径处的方位风速。U m a x ${U}_{max}$。对应的回旋科里奥利参数,f = 2 U m a x $\widehat{f}=2{U}_{max}$ /对于所有的风暴来说,R m w ${R}_{mw}$远远超过其对应的行星f $f$;其影响随着风暴强度的增加而增加。涡旋可以被认为是一个系统,它经历了行星和回旋旋转的叠加,由有效的科里奥利参数表示,F ~ = F + F $\tilde{f}=\widehat{f}+f$。在漩涡外围,f ~ $\tilde{f}$与f $f$合并。在经典的Rankine涡旋模型中,内部区域发生实体旋转,使得f´$\widehat{f}$为常数。在一个更现实的表示中,f - $\widehat{f}$不是恒定的,而随之而来的旋转β $\beta $效应维持了涡状罗斯比波。这种系统中的水平湍流可以用二维各向异性谱来量化。另一种描述是由沿径向计算的一维、纵向和横向光谱提供的。对于具有旋涡罗斯比波的旋转湍流,光谱揭示了三个范围的共存:Kolmogorov,涡旋(光谱振幅与f ~ 2 ${\tilde{f}}^{2}$成正比);分带性(横向谱幅与β 2成正比${\widehat{\beta }}^{2}$)。综合飞机观测资料显示,随着风暴强度的增加,其涡旋湍流由单纯的转流到混合型转流再到以转流为主。后者类似于快速旋转的巨行星上的带喷流流态。tc的眼壁相当于向东的纬向急流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Turbulence of Tropical Cyclones: From Peristrophic to Zonostrophic

Turbulence of Tropical Cyclones: From Peristrophic to Zonostrophic

Cyclostrophic rotation in the core region of tropical cyclones (TCs) imprints a distinct signature upon their turbulence structure. Its intensity is characterized by the radius of maximum wind, R m w ${R}_{mw}$ , and the azimuthal wind velocity at that radius, U m a x ${U}_{max}$ . The corresponding cyclostrophic Coriolis parameter, f ˆ = 2 U m a x $\widehat{f}=2{U}_{max}$ / R m w ${R}_{mw}$ , far exceeds its planetary counterpart, f $f$ , for all storms; its impact increases with storm intensity. The vortex can be thought of as a system undergoing a superposition of planetary and cyclostrophic rotations represented by the effective Coriolis parameter, f = f ˆ + f $\tilde{f}=\widehat{f}+f$ . On the vortex periphery, f $\tilde{f}$ merges with f $f$ . In the classical Rankine vortex model, the inner region undergoes solid-body rotation rendering f ˆ $\widehat{f}$ constant. In a more realistic representation, f ˆ $\widehat{f}$ is not constant, and the ensuing cyclostrophic β $\beta $ -effect sustains vortex Rossby waves. Horizontal turbulence in such a system can be quantified by a two-dimensional anisotropic spectrum. An alternative description is provided by one-dimensional, longitudinal, and transverse spectra computed along the radial direction. For rotating turbulence with vortex Rossby waves, the spectra divulge a coexistence of three ranges: Kolmogorov, peristrophic (spectral amplitudes are proportional to f 2 ${\tilde{f}}^{2}$ ), and zonostrophic (transverse spectrum amplitude is proportional to β ˆ 2 ${\widehat{\beta }}^{2}$ ). A comprehensive database of TC winds collected by reconnaissance airplanes reveals that with increasing storm intensity, their cyclostrophic turbulence evolves from purely peristrophic to mixed peristrophic-zonostrophic to predominantly zonostrophic. The latter is akin to the flow regime harboring zonal jets on fast rotating giant planets. The eyewall of TCs is an equivalent of an eastward zonal jet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信