Amir Hossein Barjini;Seyed Adel Alizadeh Kolagar;Sadeq Yaqubi;Jouni Mattila
{"title":"基于深度强化学习的柔性机械臂运动规划与PDE控制","authors":"Amir Hossein Barjini;Seyed Adel Alizadeh Kolagar;Sadeq Yaqubi;Jouni Mattila","doi":"10.1109/LRA.2025.3588057","DOIUrl":null,"url":null,"abstract":"This article presents a motion planning and control framework for flexible robotic manipulators, integrating deep reinforcement learning (DRL) with a nonlinear partial differential equation (PDE) controller. Unlike conventional approaches that focus solely on control, we demonstrate that the desired trajectory significantly influences endpoint vibrations. To address this, a DRL motion planner, trained using the soft actor-critic (SAC) algorithm, generates optimized trajectories that inherently minimize vibrations. The PDE nonlinear controller then computes the required torques to track the planned trajectory while ensuring closed-loop stability using Lyapunov analysis. The proposed methodology is validated through both simulations and real-world experiments, demonstrating superior vibration suppression and tracking accuracy compared to traditional methods. The results underscore the potential of combining learning-based motion planning with model-based control for enhancing the precision and stability of flexible robotic manipulators.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 9","pages":"8634-8641"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11077600","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning-Based Motion Planning and PDE Control for Flexible Manipulators\",\"authors\":\"Amir Hossein Barjini;Seyed Adel Alizadeh Kolagar;Sadeq Yaqubi;Jouni Mattila\",\"doi\":\"10.1109/LRA.2025.3588057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a motion planning and control framework for flexible robotic manipulators, integrating deep reinforcement learning (DRL) with a nonlinear partial differential equation (PDE) controller. Unlike conventional approaches that focus solely on control, we demonstrate that the desired trajectory significantly influences endpoint vibrations. To address this, a DRL motion planner, trained using the soft actor-critic (SAC) algorithm, generates optimized trajectories that inherently minimize vibrations. The PDE nonlinear controller then computes the required torques to track the planned trajectory while ensuring closed-loop stability using Lyapunov analysis. The proposed methodology is validated through both simulations and real-world experiments, demonstrating superior vibration suppression and tracking accuracy compared to traditional methods. The results underscore the potential of combining learning-based motion planning with model-based control for enhancing the precision and stability of flexible robotic manipulators.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 9\",\"pages\":\"8634-8641\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11077600\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11077600/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11077600/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Deep Reinforcement Learning-Based Motion Planning and PDE Control for Flexible Manipulators
This article presents a motion planning and control framework for flexible robotic manipulators, integrating deep reinforcement learning (DRL) with a nonlinear partial differential equation (PDE) controller. Unlike conventional approaches that focus solely on control, we demonstrate that the desired trajectory significantly influences endpoint vibrations. To address this, a DRL motion planner, trained using the soft actor-critic (SAC) algorithm, generates optimized trajectories that inherently minimize vibrations. The PDE nonlinear controller then computes the required torques to track the planned trajectory while ensuring closed-loop stability using Lyapunov analysis. The proposed methodology is validated through both simulations and real-world experiments, demonstrating superior vibration suppression and tracking accuracy compared to traditional methods. The results underscore the potential of combining learning-based motion planning with model-based control for enhancing the precision and stability of flexible robotic manipulators.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.