热等离子体电子在Fano纳米结构中的量子产生:推动等离子体量子效应的极限。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-17 DOI:10.1021/acsnano.5c02861
Peihang Li, Artur Movsesyan*, Alina Muravitskaya, Oscar Ávalos-Ovando, Peng Yu, Eva Yazmin Santiago Santos, Li Ma, Zhimin Jing, Yue Li, Zhiming Wang* and Alexander O. Govorov*, 
{"title":"热等离子体电子在Fano纳米结构中的量子产生:推动等离子体量子效应的极限。","authors":"Peihang Li,&nbsp;Artur Movsesyan*,&nbsp;Alina Muravitskaya,&nbsp;Oscar Ávalos-Ovando,&nbsp;Peng Yu,&nbsp;Eva Yazmin Santiago Santos,&nbsp;Li Ma,&nbsp;Zhimin Jing,&nbsp;Yue Li,&nbsp;Zhiming Wang* and Alexander O. Govorov*,&nbsp;","doi":"10.1021/acsnano.5c02861","DOIUrl":null,"url":null,"abstract":"<p >Exploring the mechanisms and potential of hot-electron (HE) generation is a crucial facet of contemporary nanooptics and nanoelectronics research. In this work, we examine the limits of localization and enhancement in HE generation, particularly in the context of photochemical processes such as hydrocarbon fuel synthesis. For this study, we developed a nonlinear, quantum, self-consistent formalism incorporating multipole Kreibig parameters. We employed a plasmonic trimer consisting of two broadband antenna nanoparticles (NPs) and a small “reactor” nanorod (NR) with a narrow resonance. In this Fano scheme, the total absorption of the NP–NR–NP trimer exhibits a pronounced Fano effect─specifically, a Fano dip. Notably, we observe a significant enhancement in HE generation when computing surface maps within the NR. We refer to this configuration as an HE Super-Generator. From a fundamental perspective, the proposed nanooptical regime─combining Fano interference with the antenna effect─represents a scenario approaching the practical upper limit of HE-based quantum effects achievable in plasmonics. Our findings point to a promising strategy for future optoelectronic and photochemical applications at the classical–quantum interface in plasmonic systems.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 31","pages":"28160–28170"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Generation of Hot Plasmonic Electrons in a Fano Nanostructure: Pushing the Limits of Quantum Effects in Plasmonics\",\"authors\":\"Peihang Li,&nbsp;Artur Movsesyan*,&nbsp;Alina Muravitskaya,&nbsp;Oscar Ávalos-Ovando,&nbsp;Peng Yu,&nbsp;Eva Yazmin Santiago Santos,&nbsp;Li Ma,&nbsp;Zhimin Jing,&nbsp;Yue Li,&nbsp;Zhiming Wang* and Alexander O. Govorov*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c02861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Exploring the mechanisms and potential of hot-electron (HE) generation is a crucial facet of contemporary nanooptics and nanoelectronics research. In this work, we examine the limits of localization and enhancement in HE generation, particularly in the context of photochemical processes such as hydrocarbon fuel synthesis. For this study, we developed a nonlinear, quantum, self-consistent formalism incorporating multipole Kreibig parameters. We employed a plasmonic trimer consisting of two broadband antenna nanoparticles (NPs) and a small “reactor” nanorod (NR) with a narrow resonance. In this Fano scheme, the total absorption of the NP–NR–NP trimer exhibits a pronounced Fano effect─specifically, a Fano dip. Notably, we observe a significant enhancement in HE generation when computing surface maps within the NR. We refer to this configuration as an HE Super-Generator. From a fundamental perspective, the proposed nanooptical regime─combining Fano interference with the antenna effect─represents a scenario approaching the practical upper limit of HE-based quantum effects achievable in plasmonics. Our findings point to a promising strategy for future optoelectronic and photochemical applications at the classical–quantum interface in plasmonic systems.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 31\",\"pages\":\"28160–28170\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c02861\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c02861","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

探索热电子产生的机制和潜力是当代纳米光学和纳米电子学研究的一个重要方面。在这项工作中,我们研究了HE生成的本地化和增强的局限性,特别是在碳氢化合物燃料合成等光化学过程的背景下。在这项研究中,我们开发了一个包含多极克瑞比格参数的非线性、量子、自洽的形式体系。我们采用了一种等离子体三聚体,由两个宽带天线纳米粒子(NPs)和一个窄共振的小“反应堆”纳米棒(NR)组成。在这个范诺方案中,NP-NR-NP三聚体的总吸收表现出明显的范诺效应──特别是范诺下降。值得注意的是,当在NR内计算表面地图时,我们观察到HE生成的显着增强。我们将这种配置称为HE超级生成器。从基本的角度来看,所提出的纳米光学体制──结合法诺干涉和天线效应──代表了一种接近等离子体中可实现的he基量子效应的实际上限的情景。我们的发现为等离子体系统中经典-量子界面的未来光电和光化学应用指明了一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum Generation of Hot Plasmonic Electrons in a Fano Nanostructure: Pushing the Limits of Quantum Effects in Plasmonics

Quantum Generation of Hot Plasmonic Electrons in a Fano Nanostructure: Pushing the Limits of Quantum Effects in Plasmonics

Exploring the mechanisms and potential of hot-electron (HE) generation is a crucial facet of contemporary nanooptics and nanoelectronics research. In this work, we examine the limits of localization and enhancement in HE generation, particularly in the context of photochemical processes such as hydrocarbon fuel synthesis. For this study, we developed a nonlinear, quantum, self-consistent formalism incorporating multipole Kreibig parameters. We employed a plasmonic trimer consisting of two broadband antenna nanoparticles (NPs) and a small “reactor” nanorod (NR) with a narrow resonance. In this Fano scheme, the total absorption of the NP–NR–NP trimer exhibits a pronounced Fano effect─specifically, a Fano dip. Notably, we observe a significant enhancement in HE generation when computing surface maps within the NR. We refer to this configuration as an HE Super-Generator. From a fundamental perspective, the proposed nanooptical regime─combining Fano interference with the antenna effect─represents a scenario approaching the practical upper limit of HE-based quantum effects achievable in plasmonics. Our findings point to a promising strategy for future optoelectronic and photochemical applications at the classical–quantum interface in plasmonic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信