通过战略配体工程释放富卤化钙钛矿在优越电荷传输动力学中的真正潜力。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Soumyadeep De, Siddharth Singh, Pooja Aggarwal, Pretyut Sundarrajan and Vishal Govind Rao*, 
{"title":"通过战略配体工程释放富卤化钙钛矿在优越电荷传输动力学中的真正潜力。","authors":"Soumyadeep De,&nbsp;Siddharth Singh,&nbsp;Pooja Aggarwal,&nbsp;Pretyut Sundarrajan and Vishal Govind Rao*,&nbsp;","doi":"10.1021/acs.jpclett.5c00867","DOIUrl":null,"url":null,"abstract":"<p >Perovskite nanocrystals (NCs) offer significant potential for photovoltaics, but optimizing surface passivation while ensuring efficient charge transport remains a challenge. This study employs oleylammonium bromide (OAmBr) to modulate ligand density in CsPbBr<sub>3</sub> (CPB) NCs, enhancing charge extraction while mitigating surface traps. By systematically varying OAmBr concentrations, we investigate the impact of bromide-rich surface sites and ligand density on charge extraction efficiency, revealing distinct charge transfer mechanisms for FcA and FcAm. Lower ligand densities improve FcA transport by enhancing surface accessibility, whereas FcAm transfer is governed by both ligand density and bromide-rich surface sites. Notably, CPB12 with optimal ligand density, exhibits superior FcAm charge transfer due to its accessible bromide-rich surface. While surface passivation boosts charge transport to hole acceptors, excessive ligand densities (CPB150) hinder extraction. These findings provide a strategic framework for optimizing ligand engineering to enhance perovskite-based photovoltaics.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 29","pages":"7470–7480"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unleashing the True Potential of Halide-Rich Perovskites in Superior Charge Transport Dynamics through Strategic Ligand Engineering\",\"authors\":\"Soumyadeep De,&nbsp;Siddharth Singh,&nbsp;Pooja Aggarwal,&nbsp;Pretyut Sundarrajan and Vishal Govind Rao*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c00867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Perovskite nanocrystals (NCs) offer significant potential for photovoltaics, but optimizing surface passivation while ensuring efficient charge transport remains a challenge. This study employs oleylammonium bromide (OAmBr) to modulate ligand density in CsPbBr<sub>3</sub> (CPB) NCs, enhancing charge extraction while mitigating surface traps. By systematically varying OAmBr concentrations, we investigate the impact of bromide-rich surface sites and ligand density on charge extraction efficiency, revealing distinct charge transfer mechanisms for FcA and FcAm. Lower ligand densities improve FcA transport by enhancing surface accessibility, whereas FcAm transfer is governed by both ligand density and bromide-rich surface sites. Notably, CPB12 with optimal ligand density, exhibits superior FcAm charge transfer due to its accessible bromide-rich surface. While surface passivation boosts charge transport to hole acceptors, excessive ligand densities (CPB150) hinder extraction. These findings provide a strategic framework for optimizing ligand engineering to enhance perovskite-based photovoltaics.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 29\",\"pages\":\"7470–7480\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00867\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00867","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿纳米晶体(NCs)为光伏发电提供了巨大的潜力,但在确保有效电荷传输的同时优化表面钝化仍然是一个挑战。本研究采用油基溴化铵(OAmBr)调节CsPbBr3 (CPB) NCs中的配体密度,增强电荷提取,同时减轻表面陷阱。通过系统地改变OAmBr浓度,我们研究了富溴表面位点和配体密度对电荷提取效率的影响,揭示了FcA和FcAm不同的电荷转移机制。较低的配体密度通过提高表面可达性来改善FcA的传输,而FcAm的转移受配体密度和富溴化物表面位点的共同控制。值得注意的是,具有最佳配体密度的CPB12,由于其可接近的富溴表面,表现出优越的FcAm电荷转移。虽然表面钝化促进电荷向空穴受体的传输,但过量的配体密度(CPB150)阻碍了提取。这些发现为优化配体工程以增强钙钛矿基光伏发电提供了一个战略框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unleashing the True Potential of Halide-Rich Perovskites in Superior Charge Transport Dynamics through Strategic Ligand Engineering

Unleashing the True Potential of Halide-Rich Perovskites in Superior Charge Transport Dynamics through Strategic Ligand Engineering

Perovskite nanocrystals (NCs) offer significant potential for photovoltaics, but optimizing surface passivation while ensuring efficient charge transport remains a challenge. This study employs oleylammonium bromide (OAmBr) to modulate ligand density in CsPbBr3 (CPB) NCs, enhancing charge extraction while mitigating surface traps. By systematically varying OAmBr concentrations, we investigate the impact of bromide-rich surface sites and ligand density on charge extraction efficiency, revealing distinct charge transfer mechanisms for FcA and FcAm. Lower ligand densities improve FcA transport by enhancing surface accessibility, whereas FcAm transfer is governed by both ligand density and bromide-rich surface sites. Notably, CPB12 with optimal ligand density, exhibits superior FcAm charge transfer due to its accessible bromide-rich surface. While surface passivation boosts charge transport to hole acceptors, excessive ligand densities (CPB150) hinder extraction. These findings provide a strategic framework for optimizing ligand engineering to enhance perovskite-based photovoltaics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信