通过级联有序-无序转变的液晶巨压热效应。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiayi Shuang, Yingying Ma, Ke Liu, Huacai Yan, Dequan Jiang, Ruqiang Zou and Yonggang Wang*, 
{"title":"通过级联有序-无序转变的液晶巨压热效应。","authors":"Jiayi Shuang,&nbsp;Yingying Ma,&nbsp;Ke Liu,&nbsp;Huacai Yan,&nbsp;Dequan Jiang,&nbsp;Ruqiang Zou and Yonggang Wang*,&nbsp;","doi":"10.1021/acsami.5c10519","DOIUrl":null,"url":null,"abstract":"<p >The order–disorder transition plays a pivotal role in the exploration of barocaloric materials, exemplified by the recent discovery of colossal barocaloric plastic crystals. Among the various candidates undergoing order–disorder transitions, liquid crystals stand out as a particular category with cascade solid-smectic-nematic-liquid phase transitions, which endow them with great potential as high-performance barocaloric materials. Herein, we report the barocaloric properties and the underlying entropy change mechanism of a series of length-tunable liquid crystals (4′-alkyl-4-cyanobiphenyl, <i>n</i>CB, <i>n</i> = 5, 6, 7, and 8). These liquid crystals exhibit large isothermal entropy changes (200–540 J K<sup>–1</sup> kg<sup>–1</sup>) and substantial adiabatic temperature changes up to 20 K at 1000 bar. Raman spectroscopy confirms enhanced intermolecular interactions and more ordered molecular packing under pressure with a notable peak narrowing and red shift. These liquid crystals also exhibit stable thermodynamic properties over multiple pressurization cycles, with an average entropy change of 275 J K<sup>–1</sup> kg<sup>–1</sup>. Compared with other known barocaloric materials, liquid crystals show superior performance in terms of both pressure response and thermal stability, highlighting the significance of cascade order–disorder phase transitions in achieving colossal barocaloric performance.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 30","pages":"43158–43168"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colossal Barocaloric Effect in Liquid Crystals via Cascade Order–Disorder Transitions\",\"authors\":\"Jiayi Shuang,&nbsp;Yingying Ma,&nbsp;Ke Liu,&nbsp;Huacai Yan,&nbsp;Dequan Jiang,&nbsp;Ruqiang Zou and Yonggang Wang*,&nbsp;\",\"doi\":\"10.1021/acsami.5c10519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The order–disorder transition plays a pivotal role in the exploration of barocaloric materials, exemplified by the recent discovery of colossal barocaloric plastic crystals. Among the various candidates undergoing order–disorder transitions, liquid crystals stand out as a particular category with cascade solid-smectic-nematic-liquid phase transitions, which endow them with great potential as high-performance barocaloric materials. Herein, we report the barocaloric properties and the underlying entropy change mechanism of a series of length-tunable liquid crystals (4′-alkyl-4-cyanobiphenyl, <i>n</i>CB, <i>n</i> = 5, 6, 7, and 8). These liquid crystals exhibit large isothermal entropy changes (200–540 J K<sup>–1</sup> kg<sup>–1</sup>) and substantial adiabatic temperature changes up to 20 K at 1000 bar. Raman spectroscopy confirms enhanced intermolecular interactions and more ordered molecular packing under pressure with a notable peak narrowing and red shift. These liquid crystals also exhibit stable thermodynamic properties over multiple pressurization cycles, with an average entropy change of 275 J K<sup>–1</sup> kg<sup>–1</sup>. Compared with other known barocaloric materials, liquid crystals show superior performance in terms of both pressure response and thermal stability, highlighting the significance of cascade order–disorder phase transitions in achieving colossal barocaloric performance.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 30\",\"pages\":\"43158–43168\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c10519\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c10519","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有序-无序转变在高压材料的探索中起着关键作用,最近发现的巨大的高压塑料晶体就是一个例子。在各种经历有序-无序转变的候选材料中,液晶作为具有级联固-近晶-向列-液相相变的特殊类别脱颖而出,这赋予了它们作为高性能高压材料的巨大潜力。本文报道了一系列长度可调液晶(4′-烷基-4-氰联苯,nCB, n = 5、6、7和8)的热压性质和潜在的熵变机制。这些液晶表现出较大的等温熵变(200-540 J K-1 kg-1)和大量的绝热温度变化,在1000 bar下可达20 K。拉曼光谱证实了分子间相互作用的增强和压力下更有序的分子堆积,具有明显的峰窄和红移。这些液晶在多个加压循环中也表现出稳定的热力学性质,平均熵变为275 J K-1 kg-1。与其他已知的高压材料相比,液晶在压力响应和热稳定性方面都表现出优越的性能,突出了级联有序-无序相变对实现巨大的高压性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Colossal Barocaloric Effect in Liquid Crystals via Cascade Order–Disorder Transitions

Colossal Barocaloric Effect in Liquid Crystals via Cascade Order–Disorder Transitions

The order–disorder transition plays a pivotal role in the exploration of barocaloric materials, exemplified by the recent discovery of colossal barocaloric plastic crystals. Among the various candidates undergoing order–disorder transitions, liquid crystals stand out as a particular category with cascade solid-smectic-nematic-liquid phase transitions, which endow them with great potential as high-performance barocaloric materials. Herein, we report the barocaloric properties and the underlying entropy change mechanism of a series of length-tunable liquid crystals (4′-alkyl-4-cyanobiphenyl, nCB, n = 5, 6, 7, and 8). These liquid crystals exhibit large isothermal entropy changes (200–540 J K–1 kg–1) and substantial adiabatic temperature changes up to 20 K at 1000 bar. Raman spectroscopy confirms enhanced intermolecular interactions and more ordered molecular packing under pressure with a notable peak narrowing and red shift. These liquid crystals also exhibit stable thermodynamic properties over multiple pressurization cycles, with an average entropy change of 275 J K–1 kg–1. Compared with other known barocaloric materials, liquid crystals show superior performance in terms of both pressure response and thermal stability, highlighting the significance of cascade order–disorder phase transitions in achieving colossal barocaloric performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信