{"title":"基于Frenet-Serret框架的三维曲线结构零件分割。","authors":"Shixuan Leslie Gu,Jason Ken Adhinarta,Mikhail Bessmeltsev,Jiancheng Yang,Yongjie Jessica Zhang,Wenjie Yin,Daniel Berger,Jeff Lichtman,Hanspeter Pfister,Donglai Wei","doi":"10.1109/tmi.2025.3589543","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of anatomical substructures within 3D curvilinear structures in medical imaging remains challenging due to their complex geometry and the scarcity of diverse, large-scale datasets for algorithm development and evaluation. In this paper, we use dendritic spine segmentation as a case study and address these challenges by introducing a novel Frenet-Serret Framebased Decomposition, which decomposes 3D curvilinear structures into a globally smooth continuous curve that captures the overall shape, and a cylindrical primitive that encodes local geometric properties. This approach leverages Frenet-Serret Frames and arc length parameterization to preserve essential geometric features while reducing representational complexity, facilitating data-efficient learning, improved segmentation accuracy, and generalization on 3D curvilinear structures. To rigorously evaluate our method, we introduce two datasets: CurviSeg, a synthetic dataset for 3D curvilinear structure segmentation that validates our method's key properties, and DenSpineEM, a benchmark for dendritic spine segmentation, which comprises 4,476 manually annotated spines from 70 dendrites across three public electron microscopy datasets, covering multiple brain regions and species. Our experiments on DenSpineEM demonstrate exceptional cross-region and cross-species generalization: models trained on the mouse somatosensory cortex subset achieve 94.43% Dice, maintaining strong performance in zero-shot segmentation on both mouse visual cortex (95.61% Dice) and human frontal lobe (86.63% Dice) subsets. Moreover, we test the generalizability of our method on the IntrA dataset, where it achieves 77.08% Dice (5.29% higher than prior arts) on intracranial aneurysm segmentation from entire artery models. These findings demonstrate the potential of our approach for accurately analyzing complex curvilinear structures across diverse medical imaging fields. Our dataset, code, and models are available at https://github.com/VCG/FFD4DenSpineEM to support future research.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"134 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frenet-Serret Frame-based Decomposition for Part Segmentation of 3D Curvilinear Structures.\",\"authors\":\"Shixuan Leslie Gu,Jason Ken Adhinarta,Mikhail Bessmeltsev,Jiancheng Yang,Yongjie Jessica Zhang,Wenjie Yin,Daniel Berger,Jeff Lichtman,Hanspeter Pfister,Donglai Wei\",\"doi\":\"10.1109/tmi.2025.3589543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of anatomical substructures within 3D curvilinear structures in medical imaging remains challenging due to their complex geometry and the scarcity of diverse, large-scale datasets for algorithm development and evaluation. In this paper, we use dendritic spine segmentation as a case study and address these challenges by introducing a novel Frenet-Serret Framebased Decomposition, which decomposes 3D curvilinear structures into a globally smooth continuous curve that captures the overall shape, and a cylindrical primitive that encodes local geometric properties. This approach leverages Frenet-Serret Frames and arc length parameterization to preserve essential geometric features while reducing representational complexity, facilitating data-efficient learning, improved segmentation accuracy, and generalization on 3D curvilinear structures. To rigorously evaluate our method, we introduce two datasets: CurviSeg, a synthetic dataset for 3D curvilinear structure segmentation that validates our method's key properties, and DenSpineEM, a benchmark for dendritic spine segmentation, which comprises 4,476 manually annotated spines from 70 dendrites across three public electron microscopy datasets, covering multiple brain regions and species. Our experiments on DenSpineEM demonstrate exceptional cross-region and cross-species generalization: models trained on the mouse somatosensory cortex subset achieve 94.43% Dice, maintaining strong performance in zero-shot segmentation on both mouse visual cortex (95.61% Dice) and human frontal lobe (86.63% Dice) subsets. Moreover, we test the generalizability of our method on the IntrA dataset, where it achieves 77.08% Dice (5.29% higher than prior arts) on intracranial aneurysm segmentation from entire artery models. These findings demonstrate the potential of our approach for accurately analyzing complex curvilinear structures across diverse medical imaging fields. Our dataset, code, and models are available at https://github.com/VCG/FFD4DenSpineEM to support future research.\",\"PeriodicalId\":13418,\"journal\":{\"name\":\"IEEE Transactions on Medical Imaging\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Medical Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/tmi.2025.3589543\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2025.3589543","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Frenet-Serret Frame-based Decomposition for Part Segmentation of 3D Curvilinear Structures.
Accurate segmentation of anatomical substructures within 3D curvilinear structures in medical imaging remains challenging due to their complex geometry and the scarcity of diverse, large-scale datasets for algorithm development and evaluation. In this paper, we use dendritic spine segmentation as a case study and address these challenges by introducing a novel Frenet-Serret Framebased Decomposition, which decomposes 3D curvilinear structures into a globally smooth continuous curve that captures the overall shape, and a cylindrical primitive that encodes local geometric properties. This approach leverages Frenet-Serret Frames and arc length parameterization to preserve essential geometric features while reducing representational complexity, facilitating data-efficient learning, improved segmentation accuracy, and generalization on 3D curvilinear structures. To rigorously evaluate our method, we introduce two datasets: CurviSeg, a synthetic dataset for 3D curvilinear structure segmentation that validates our method's key properties, and DenSpineEM, a benchmark for dendritic spine segmentation, which comprises 4,476 manually annotated spines from 70 dendrites across three public electron microscopy datasets, covering multiple brain regions and species. Our experiments on DenSpineEM demonstrate exceptional cross-region and cross-species generalization: models trained on the mouse somatosensory cortex subset achieve 94.43% Dice, maintaining strong performance in zero-shot segmentation on both mouse visual cortex (95.61% Dice) and human frontal lobe (86.63% Dice) subsets. Moreover, we test the generalizability of our method on the IntrA dataset, where it achieves 77.08% Dice (5.29% higher than prior arts) on intracranial aneurysm segmentation from entire artery models. These findings demonstrate the potential of our approach for accurately analyzing complex curvilinear structures across diverse medical imaging fields. Our dataset, code, and models are available at https://github.com/VCG/FFD4DenSpineEM to support future research.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.