{"title":"神经电极植入过程中急性炎症反应的术中及时空定位","authors":"Linlin Liu, Bangchao Xi, Yating Luo, Yuxuan Liu, Pengxin Huang, Jiayun Wu, Yao Guo, Fanxiang Bu, Yirou Liang, Fei He, Yunbo Li, Lin Zhang, Danhua Wang, Xiaotong Jiang, Guang-Zhong Yang, Guangyu Qiu","doi":"10.1016/j.matt.2025.102262","DOIUrl":null,"url":null,"abstract":"Intraoperative and spatiotemporal monitoring of neuroinflammatory indices during brain-computer interface (BCI) implantation is essential for ensuring safety and efficacy of the procedure. Current biomolecular detection approaches are unable to obtain spatiotemporally resolved inflammatory profiling, which is important for guiding the placement of microelectrodes intraoperatively. This study presents an intraoperative spatiotemporal acute inflammation detector (ISAID) that harnesses droplet-based sampling and multiplexed titanium oxynitride (TiNO) plasmonic biosensing to assess local inflammation during the insertion of intracortical microelectrodes. Through freestanding sampling droplets and fine-tuned TiNO-based biosensors, the ISAID achieved precise, sensitive, and integrated sampling to biosensing for cytokine detection with a spatial resolution down to 610 μm and a fast equivalent bioassay time of 1.25 min. The proposed system also allows multiple ISAID biosensing modes, enabling both spatial inflammation mapping and multi-cytokine analysis. Quantitative analyses of inflammatory cytokines with <em>in vivo</em> mouse models demonstrate the accuracy and practical advantages of the system.","PeriodicalId":388,"journal":{"name":"Matter","volume":"49 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intraoperative and spatiotemporal mapping of acute inflammation response during neuroelectrode implantation\",\"authors\":\"Linlin Liu, Bangchao Xi, Yating Luo, Yuxuan Liu, Pengxin Huang, Jiayun Wu, Yao Guo, Fanxiang Bu, Yirou Liang, Fei He, Yunbo Li, Lin Zhang, Danhua Wang, Xiaotong Jiang, Guang-Zhong Yang, Guangyu Qiu\",\"doi\":\"10.1016/j.matt.2025.102262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intraoperative and spatiotemporal monitoring of neuroinflammatory indices during brain-computer interface (BCI) implantation is essential for ensuring safety and efficacy of the procedure. Current biomolecular detection approaches are unable to obtain spatiotemporally resolved inflammatory profiling, which is important for guiding the placement of microelectrodes intraoperatively. This study presents an intraoperative spatiotemporal acute inflammation detector (ISAID) that harnesses droplet-based sampling and multiplexed titanium oxynitride (TiNO) plasmonic biosensing to assess local inflammation during the insertion of intracortical microelectrodes. Through freestanding sampling droplets and fine-tuned TiNO-based biosensors, the ISAID achieved precise, sensitive, and integrated sampling to biosensing for cytokine detection with a spatial resolution down to 610 μm and a fast equivalent bioassay time of 1.25 min. The proposed system also allows multiple ISAID biosensing modes, enabling both spatial inflammation mapping and multi-cytokine analysis. Quantitative analyses of inflammatory cytokines with <em>in vivo</em> mouse models demonstrate the accuracy and practical advantages of the system.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2025.102262\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102262","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Intraoperative and spatiotemporal mapping of acute inflammation response during neuroelectrode implantation
Intraoperative and spatiotemporal monitoring of neuroinflammatory indices during brain-computer interface (BCI) implantation is essential for ensuring safety and efficacy of the procedure. Current biomolecular detection approaches are unable to obtain spatiotemporally resolved inflammatory profiling, which is important for guiding the placement of microelectrodes intraoperatively. This study presents an intraoperative spatiotemporal acute inflammation detector (ISAID) that harnesses droplet-based sampling and multiplexed titanium oxynitride (TiNO) plasmonic biosensing to assess local inflammation during the insertion of intracortical microelectrodes. Through freestanding sampling droplets and fine-tuned TiNO-based biosensors, the ISAID achieved precise, sensitive, and integrated sampling to biosensing for cytokine detection with a spatial resolution down to 610 μm and a fast equivalent bioassay time of 1.25 min. The proposed system also allows multiple ISAID biosensing modes, enabling both spatial inflammation mapping and multi-cytokine analysis. Quantitative analyses of inflammatory cytokines with in vivo mouse models demonstrate the accuracy and practical advantages of the system.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.