Malaquias Correa Anguita, Anita Camillini, Sara Marzban, Marco Robbio, Benoit Seron, Leonardo Novo and Jelmer J Renema
{"title":"用探测器分束法进行玻色子采样的实验验证","authors":"Malaquias Correa Anguita, Anita Camillini, Sara Marzban, Marco Robbio, Benoit Seron, Leonardo Novo and Jelmer J Renema","doi":"10.1088/2058-9565/adecbc","DOIUrl":null,"url":null,"abstract":"We experimentally demonstrate a testing strategy for boson samplers that is based on efficiently computable expressions for the output photon counting distributions binned over multiple optical modes. We apply this method to validate boson sampling experiments with three photons on a reconfigurable photonic chip, which implements a four-mode interferometer, analyzing 50 Haar-random unitary transformations while tuning photon indistinguishability via controlled delays. We show that for (nearly) indistinguishable photons, the experiment accurately reproduces the ideal boson sampling binned-mode distributions, which exhibit variations that depend both on the specific interferometer implemented as well as the choice of bin, confirming the usefulness of the method to diagnose imperfections such as partial distinguishability or imperfect chip control. Finally, we analyze the behavior of Haar-averaged binned-mode distributions in relation to indistinguishability and demonstrate analytically that its variance is proportional to the average of the square of the photons’ indistinguishability parameter. These findings highlight the central role of binning in boson sampling validation, offering a scalable and efficient framework for assessing multiphoton interference and experimental performance.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"95 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental validation of boson sampling using detector binning\",\"authors\":\"Malaquias Correa Anguita, Anita Camillini, Sara Marzban, Marco Robbio, Benoit Seron, Leonardo Novo and Jelmer J Renema\",\"doi\":\"10.1088/2058-9565/adecbc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experimentally demonstrate a testing strategy for boson samplers that is based on efficiently computable expressions for the output photon counting distributions binned over multiple optical modes. We apply this method to validate boson sampling experiments with three photons on a reconfigurable photonic chip, which implements a four-mode interferometer, analyzing 50 Haar-random unitary transformations while tuning photon indistinguishability via controlled delays. We show that for (nearly) indistinguishable photons, the experiment accurately reproduces the ideal boson sampling binned-mode distributions, which exhibit variations that depend both on the specific interferometer implemented as well as the choice of bin, confirming the usefulness of the method to diagnose imperfections such as partial distinguishability or imperfect chip control. Finally, we analyze the behavior of Haar-averaged binned-mode distributions in relation to indistinguishability and demonstrate analytically that its variance is proportional to the average of the square of the photons’ indistinguishability parameter. These findings highlight the central role of binning in boson sampling validation, offering a scalable and efficient framework for assessing multiphoton interference and experimental performance.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adecbc\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adecbc","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental validation of boson sampling using detector binning
We experimentally demonstrate a testing strategy for boson samplers that is based on efficiently computable expressions for the output photon counting distributions binned over multiple optical modes. We apply this method to validate boson sampling experiments with three photons on a reconfigurable photonic chip, which implements a four-mode interferometer, analyzing 50 Haar-random unitary transformations while tuning photon indistinguishability via controlled delays. We show that for (nearly) indistinguishable photons, the experiment accurately reproduces the ideal boson sampling binned-mode distributions, which exhibit variations that depend both on the specific interferometer implemented as well as the choice of bin, confirming the usefulness of the method to diagnose imperfections such as partial distinguishability or imperfect chip control. Finally, we analyze the behavior of Haar-averaged binned-mode distributions in relation to indistinguishability and demonstrate analytically that its variance is proportional to the average of the square of the photons’ indistinguishability parameter. These findings highlight the central role of binning in boson sampling validation, offering a scalable and efficient framework for assessing multiphoton interference and experimental performance.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.