{"title":"可扩展的单原子催化剂,用于高性能和耐用的水电解槽","authors":"Linlin Liu, ChungHyuk Lee","doi":"10.1016/j.checat.2025.101440","DOIUrl":null,"url":null,"abstract":"In the May 28 issue of the <em>Journal of the American Chemical Society</em>, Xue et al. report a single-atom Mn-integrated RuO<sub>2</sub> electrocatalyst that achieves an efficient oxygen evolution reaction across a broad pH range while maintaining remarkable stability over 1,000 h. This Mn-modified catalyst exhibits high stability and activity in both proton-exchange membrane and alkaline water electrolysis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"24 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable single-atom catalyst for high-performing and durable water electrolyzers\",\"authors\":\"Linlin Liu, ChungHyuk Lee\",\"doi\":\"10.1016/j.checat.2025.101440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the May 28 issue of the <em>Journal of the American Chemical Society</em>, Xue et al. report a single-atom Mn-integrated RuO<sub>2</sub> electrocatalyst that achieves an efficient oxygen evolution reaction across a broad pH range while maintaining remarkable stability over 1,000 h. This Mn-modified catalyst exhibits high stability and activity in both proton-exchange membrane and alkaline water electrolysis.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2025.101440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Scalable single-atom catalyst for high-performing and durable water electrolyzers
In the May 28 issue of the Journal of the American Chemical Society, Xue et al. report a single-atom Mn-integrated RuO2 electrocatalyst that achieves an efficient oxygen evolution reaction across a broad pH range while maintaining remarkable stability over 1,000 h. This Mn-modified catalyst exhibits high stability and activity in both proton-exchange membrane and alkaline water electrolysis.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.