Rob A. J. Eyles-Ferris, Peter G. Jonker, Andrew J. Levan, Daniele Bjørn Malesani, Nikhil Sarin, Christopher L. Fryer, Jillian C. Rastinejad, Eric Burns, Nial R. Tanvir, Paul T. O’Brien, Wen-fai Fong, Ilya Mandel, Benjamin P. Gompertz, Charles D. Kilpatrick, Steven Bloemen, Joe S. Bright, Francesco Carotenuto, Gregory Corcoran, Laura Cotter, Paul J. Groot, Luca Izzo, Tanmoy Laskar, Antonio Martin-Carrillo, Jesse Palmerio, Maria E. Ravasio, Jan van Roestel, Andrea Saccardi, Rhaana L. C. Starling, Aishwarya Linesh Thakur, Susanna D. Vergani, Paul M. Vreeswijk, Franz E. Bauer, Sergio Campana, Jennifer A. Chacón, Ashley A. Chrimes, Stefano Covino, Joyce N. D. van Dalen, Valerio D’Elia, Massimiliano De Pasquale, Nusrin Habeeb, Dieter H. Hartmann, Agnes P. C. van Hoof, Páll Jakobsson, Yashaswi Julakanti, Giorgos Leloudas, Daniel Mata Sánchez, Christopher J. Nixon, Daniëlle L. A. Pieterse, Giovanna Pugliese, Jonathan Quirola-Vásquez, Ben C. Rayson, Ruben Salvaterra, Ben Schneider, Ma..
{"title":"袋鼠的第一跳:EP250108a/SN 2025kg的早期快速冷却阶段","authors":"Rob A. J. Eyles-Ferris, Peter G. Jonker, Andrew J. Levan, Daniele Bjørn Malesani, Nikhil Sarin, Christopher L. Fryer, Jillian C. Rastinejad, Eric Burns, Nial R. Tanvir, Paul T. O’Brien, Wen-fai Fong, Ilya Mandel, Benjamin P. Gompertz, Charles D. Kilpatrick, Steven Bloemen, Joe S. Bright, Francesco Carotenuto, Gregory Corcoran, Laura Cotter, Paul J. Groot, Luca Izzo, Tanmoy Laskar, Antonio Martin-Carrillo, Jesse Palmerio, Maria E. Ravasio, Jan van Roestel, Andrea Saccardi, Rhaana L. C. Starling, Aishwarya Linesh Thakur, Susanna D. Vergani, Paul M. Vreeswijk, Franz E. Bauer, Sergio Campana, Jennifer A. Chacón, Ashley A. Chrimes, Stefano Covino, Joyce N. D. van Dalen, Valerio D’Elia, Massimiliano De Pasquale, Nusrin Habeeb, Dieter H. Hartmann, Agnes P. C. van Hoof, Páll Jakobsson, Yashaswi Julakanti, Giorgos Leloudas, Daniel Mata Sánchez, Christopher J. Nixon, Daniëlle L. A. Pieterse, Giovanna Pugliese, Jonathan Quirola-Vásquez, Ben C. Rayson, Ruben Salvaterra, Ben Schneider, Ma..","doi":"10.3847/2041-8213/ade1d9","DOIUrl":null,"url":null,"abstract":"Fast X-ray transients are a rare and poorly understood population of events. Previously difficult to detect in real time, the launch of the Einstein Probe with its Wide-field X-ray Telescope has led to a rapid expansionof the sample and allowed the exploration of these transients across the electromagnetic spectrum. EP250108a is a recently detected example linked to an optical counterpart, SN 2025kg, or “the kangaroo.” Together with a companion Letter we present our observing campaign and analysis of this event. In this letter, we focus on the early evolution of the optical counterpart over the first 6 days, including our measurement of the redshift of z = 0.17641. We compare to other supernovae and fast transients showing similar features, finding significant similarities with SN 2006aj and SN 2020bvc, and show that the source is well modelled by a rapidly expanding cooling blackbody. We show the observed X-ray and radio properties are consistent with a collapsar-powered jet that is low energy (≲1051 erg) and/or fails to break out of the dense material surrounding it. While we examine the possibility that the optical emission emerges from the shock produced as the supernova ejecta expand into a dense shell of circumstellar material, due to our X-ray and radio inferences, we favour a model where it arises from a shocked cocoon resulting from a trapped jet. This makes SN 2025 one of the few examples of this currently observationally rare event.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Kangaroo’s First Hop: The Early Fast Cooling Phase of EP250108a/SN 2025kg\",\"authors\":\"Rob A. J. Eyles-Ferris, Peter G. Jonker, Andrew J. Levan, Daniele Bjørn Malesani, Nikhil Sarin, Christopher L. Fryer, Jillian C. Rastinejad, Eric Burns, Nial R. Tanvir, Paul T. O’Brien, Wen-fai Fong, Ilya Mandel, Benjamin P. Gompertz, Charles D. Kilpatrick, Steven Bloemen, Joe S. Bright, Francesco Carotenuto, Gregory Corcoran, Laura Cotter, Paul J. Groot, Luca Izzo, Tanmoy Laskar, Antonio Martin-Carrillo, Jesse Palmerio, Maria E. Ravasio, Jan van Roestel, Andrea Saccardi, Rhaana L. C. Starling, Aishwarya Linesh Thakur, Susanna D. Vergani, Paul M. Vreeswijk, Franz E. Bauer, Sergio Campana, Jennifer A. Chacón, Ashley A. Chrimes, Stefano Covino, Joyce N. D. van Dalen, Valerio D’Elia, Massimiliano De Pasquale, Nusrin Habeeb, Dieter H. Hartmann, Agnes P. C. van Hoof, Páll Jakobsson, Yashaswi Julakanti, Giorgos Leloudas, Daniel Mata Sánchez, Christopher J. Nixon, Daniëlle L. A. Pieterse, Giovanna Pugliese, Jonathan Quirola-Vásquez, Ben C. Rayson, Ruben Salvaterra, Ben Schneider, Ma..\",\"doi\":\"10.3847/2041-8213/ade1d9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast X-ray transients are a rare and poorly understood population of events. Previously difficult to detect in real time, the launch of the Einstein Probe with its Wide-field X-ray Telescope has led to a rapid expansionof the sample and allowed the exploration of these transients across the electromagnetic spectrum. EP250108a is a recently detected example linked to an optical counterpart, SN 2025kg, or “the kangaroo.” Together with a companion Letter we present our observing campaign and analysis of this event. In this letter, we focus on the early evolution of the optical counterpart over the first 6 days, including our measurement of the redshift of z = 0.17641. We compare to other supernovae and fast transients showing similar features, finding significant similarities with SN 2006aj and SN 2020bvc, and show that the source is well modelled by a rapidly expanding cooling blackbody. We show the observed X-ray and radio properties are consistent with a collapsar-powered jet that is low energy (≲1051 erg) and/or fails to break out of the dense material surrounding it. While we examine the possibility that the optical emission emerges from the shock produced as the supernova ejecta expand into a dense shell of circumstellar material, due to our X-ray and radio inferences, we favour a model where it arises from a shocked cocoon resulting from a trapped jet. This makes SN 2025 one of the few examples of this currently observationally rare event.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ade1d9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ade1d9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Kangaroo’s First Hop: The Early Fast Cooling Phase of EP250108a/SN 2025kg
Fast X-ray transients are a rare and poorly understood population of events. Previously difficult to detect in real time, the launch of the Einstein Probe with its Wide-field X-ray Telescope has led to a rapid expansionof the sample and allowed the exploration of these transients across the electromagnetic spectrum. EP250108a is a recently detected example linked to an optical counterpart, SN 2025kg, or “the kangaroo.” Together with a companion Letter we present our observing campaign and analysis of this event. In this letter, we focus on the early evolution of the optical counterpart over the first 6 days, including our measurement of the redshift of z = 0.17641. We compare to other supernovae and fast transients showing similar features, finding significant similarities with SN 2006aj and SN 2020bvc, and show that the source is well modelled by a rapidly expanding cooling blackbody. We show the observed X-ray and radio properties are consistent with a collapsar-powered jet that is low energy (≲1051 erg) and/or fails to break out of the dense material surrounding it. While we examine the possibility that the optical emission emerges from the shock produced as the supernova ejecta expand into a dense shell of circumstellar material, due to our X-ray and radio inferences, we favour a model where it arises from a shocked cocoon resulting from a trapped jet. This makes SN 2025 one of the few examples of this currently observationally rare event.