{"title":"高面电容级结构ZnCo2O4@FeCoNi-LDH电极的简易合成","authors":"Xiang Sun, Shanshan Bai, Shenhao Gu, Siyuan Wang, Xinming Wu","doi":"10.1016/j.jallcom.2025.182322","DOIUrl":null,"url":null,"abstract":"The development of high areal capacitance electrode materials remains a critical challenge in supercapacitor technology. This study implements a substrate-free powder growth strategy to synthesize ZnCo<sub>2</sub>O<sub>4</sub>@FeCoNi-LDH micro-nano powders with core-shell heterostructures via controlled solvothermal synthesis. Through stepwise crystallization, ZnCo<sub>2</sub>O<sub>4</sub> nanowires were initially constructed as conductive scaffolds, followed by in situ growth of FeCoNi-LDH nanosheets to form hierarchical porous architectures. Leveraging Zn<sup>2+</sup>'s strong electronegativity and spinel-phase stability, the composite demonstrates optimized pore size distribution (1.5<!-- --> <!-- -->nm reduction vs. pristine material) and ultrahigh specific surface area (282.4 m<sup>2</sup>/g). Synergized with Fe/Co/Ni multimetallic redox centers, these structural advantages significantly enhance electron transport efficiency and cycling endurance. As an electrode, it achieves 1937 F g<sup>-1</sup> at 1<!-- --> <!-- -->A<!-- --> <!-- -->g<sup>-1</sup> areal capacitance of 12.92<!-- --> <!-- -->F<!-- --> <!-- -->cm<sup>-2</sup> with 97.69% capacity retention after 6000 cycles. When assembled into nickel foam (NF)-configured asymmetric devices, the system delivers 96.87<!-- --> <!-- -->Wh<!-- --> <!-- -->kg<sup>-1</sup> energy density at 300<!-- --> <!-- -->W<!-- --> <!-- -->kg<sup>-1</sup> power density. This powder-based synthetic paradigm establishes a scalable pathway for high-stability composite electrodes.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"84 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of ZnCo2O4@FeCoNi-LDH electrode with hierarchical structure for high areal capacitance\",\"authors\":\"Xiang Sun, Shanshan Bai, Shenhao Gu, Siyuan Wang, Xinming Wu\",\"doi\":\"10.1016/j.jallcom.2025.182322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of high areal capacitance electrode materials remains a critical challenge in supercapacitor technology. This study implements a substrate-free powder growth strategy to synthesize ZnCo<sub>2</sub>O<sub>4</sub>@FeCoNi-LDH micro-nano powders with core-shell heterostructures via controlled solvothermal synthesis. Through stepwise crystallization, ZnCo<sub>2</sub>O<sub>4</sub> nanowires were initially constructed as conductive scaffolds, followed by in situ growth of FeCoNi-LDH nanosheets to form hierarchical porous architectures. Leveraging Zn<sup>2+</sup>'s strong electronegativity and spinel-phase stability, the composite demonstrates optimized pore size distribution (1.5<!-- --> <!-- -->nm reduction vs. pristine material) and ultrahigh specific surface area (282.4 m<sup>2</sup>/g). Synergized with Fe/Co/Ni multimetallic redox centers, these structural advantages significantly enhance electron transport efficiency and cycling endurance. As an electrode, it achieves 1937 F g<sup>-1</sup> at 1<!-- --> <!-- -->A<!-- --> <!-- -->g<sup>-1</sup> areal capacitance of 12.92<!-- --> <!-- -->F<!-- --> <!-- -->cm<sup>-2</sup> with 97.69% capacity retention after 6000 cycles. When assembled into nickel foam (NF)-configured asymmetric devices, the system delivers 96.87<!-- --> <!-- -->Wh<!-- --> <!-- -->kg<sup>-1</sup> energy density at 300<!-- --> <!-- -->W<!-- --> <!-- -->kg<sup>-1</sup> power density. This powder-based synthetic paradigm establishes a scalable pathway for high-stability composite electrodes.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.182322\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.182322","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
高面积电容电极材料的开发仍然是超级电容器技术的一个关键挑战。本研究采用无底物粉末生长策略,通过受控溶剂热合成技术合成具有核壳异质结构的ZnCo2O4@FeCoNi-LDH微纳粉末。通过逐步结晶,ZnCo2O4纳米线首先作为导电支架构建,然后原位生长fecni - ldh纳米片形成分层多孔结构。利用Zn2+的强电负性和尖晶石相稳定性,该复合材料具有优化的孔径分布(比原始材料减少1.5 nm)和超高的比表面积(282.4 m2/g)。这些结构优势与Fe/Co/Ni多金属氧化还原中心协同作用,显著提高了电子传递效率和循环耐力。作为电极,它在1 A时达到1937 F -1,面积电容为12.92 F cm-2,经过6000次循环后容量保持率为97.69%。当组装成泡沫镍(NF)配置的非对称器件时,该系统在300 W kg-1功率密度下提供96.87 Wh kg-1能量密度。这种基于粉末的合成范例为高稳定性复合电极建立了可扩展的途径。
Facile synthesis of ZnCo2O4@FeCoNi-LDH electrode with hierarchical structure for high areal capacitance
The development of high areal capacitance electrode materials remains a critical challenge in supercapacitor technology. This study implements a substrate-free powder growth strategy to synthesize ZnCo2O4@FeCoNi-LDH micro-nano powders with core-shell heterostructures via controlled solvothermal synthesis. Through stepwise crystallization, ZnCo2O4 nanowires were initially constructed as conductive scaffolds, followed by in situ growth of FeCoNi-LDH nanosheets to form hierarchical porous architectures. Leveraging Zn2+'s strong electronegativity and spinel-phase stability, the composite demonstrates optimized pore size distribution (1.5 nm reduction vs. pristine material) and ultrahigh specific surface area (282.4 m2/g). Synergized with Fe/Co/Ni multimetallic redox centers, these structural advantages significantly enhance electron transport efficiency and cycling endurance. As an electrode, it achieves 1937 F g-1 at 1 A g-1 areal capacitance of 12.92 F cm-2 with 97.69% capacity retention after 6000 cycles. When assembled into nickel foam (NF)-configured asymmetric devices, the system delivers 96.87 Wh kg-1 energy density at 300 W kg-1 power density. This powder-based synthetic paradigm establishes a scalable pathway for high-stability composite electrodes.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.