从动力学到分子水平的洞察到4族金属氧化物纳米晶体的合成。

IF 6.5 Q2 CHEMISTRY, PHYSICAL
ACS Materials Au Pub Date : 2025-05-29 eCollection Date: 2025-07-09 DOI:10.1021/acsmaterialsau.5c00032
Carlotta Seno, Christopher B Whitehead, David E Salazar Marcano, Ian Chaon, Jonathan De Roo
{"title":"从动力学到分子水平的洞察到4族金属氧化物纳米晶体的合成。","authors":"Carlotta Seno, Christopher B Whitehead, David E Salazar Marcano, Ian Chaon, Jonathan De Roo","doi":"10.1021/acsmaterialsau.5c00032","DOIUrl":null,"url":null,"abstract":"<p><p>Kinetic control is a powerful tool for traversing the chemical landscape toward the intended product. For group 4 metal oxide nanocrystals, the development of complex multimetallic heterostructures is still a challenge, partly due to the lack of kinetic and mechanistic understanding. Here, we study the reaction kinetics of the nonaqueous synthesis of titanium, zirconium, and hafnium oxide nanocrystals, from the decomposition of metal isopropoxide and metal halide, in the presence of tri-<i>n</i>-octylphosphine oxide (TOPO). The reaction rate depends on the metal: Ti ≫ Zr > Hf. While titanium follows an S<sub>N</sub>1 substitution mechanism, zirconium and hafnium follow an auto-catalyzed E1 elimination. In both cases, the reaction kinetics can be tuned by varying the amount of TOPO or the chloride content due to their impact on the electronic structure of the transition state of the rate-determining step. The proposed mechanism was shown to be consistent with kinetic modeling of the data for different metal concentrations. This deeper understanding of group 4 metal oxide nanocrystal formation will facilitate access to novel heterostructures relevant for optical, catalytic, and electronic materials.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 4","pages":"709-717"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257421/pdf/","citationCount":"0","resultStr":"{\"title\":\"From Kinetics to Molecular-Level Insights into Group 4 Metal Oxide Nanocrystal Synthesis.\",\"authors\":\"Carlotta Seno, Christopher B Whitehead, David E Salazar Marcano, Ian Chaon, Jonathan De Roo\",\"doi\":\"10.1021/acsmaterialsau.5c00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kinetic control is a powerful tool for traversing the chemical landscape toward the intended product. For group 4 metal oxide nanocrystals, the development of complex multimetallic heterostructures is still a challenge, partly due to the lack of kinetic and mechanistic understanding. Here, we study the reaction kinetics of the nonaqueous synthesis of titanium, zirconium, and hafnium oxide nanocrystals, from the decomposition of metal isopropoxide and metal halide, in the presence of tri-<i>n</i>-octylphosphine oxide (TOPO). The reaction rate depends on the metal: Ti ≫ Zr > Hf. While titanium follows an S<sub>N</sub>1 substitution mechanism, zirconium and hafnium follow an auto-catalyzed E1 elimination. In both cases, the reaction kinetics can be tuned by varying the amount of TOPO or the chloride content due to their impact on the electronic structure of the transition state of the rate-determining step. The proposed mechanism was shown to be consistent with kinetic modeling of the data for different metal concentrations. This deeper understanding of group 4 metal oxide nanocrystal formation will facilitate access to novel heterostructures relevant for optical, catalytic, and electronic materials.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"5 4\",\"pages\":\"709-717\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialsau.5c00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/9 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.5c00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/9 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

动力学控制是一种强大的工具,用于穿越化学景观,以达到预期的产品。对于4族金属氧化物纳米晶体,复杂的多金属异质结构的发展仍然是一个挑战,部分原因是缺乏动力学和机理的理解。本文研究了在氧化三辛基膦(TOPO)存在下,由金属异丙醇和金属卤化物分解制备氧化钛、氧化锆和氧化铪纳米晶体的反应动力学。反应速率取决于金属:Ti∶Zr∶>∶Hf。钛遵循SN1取代机制,而锆和铪遵循自催化E1消除机制。在这两种情况下,可以通过改变TOPO的量或氯含量来调整反应动力学,因为它们对速率决定步骤过渡态的电子结构有影响。所提出的机理与不同金属浓度下数据的动力学模型一致。对第4族金属氧化物纳米晶体形成的深入了解将有助于获得与光学、催化和电子材料相关的新型异质结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Kinetics to Molecular-Level Insights into Group 4 Metal Oxide Nanocrystal Synthesis.

Kinetic control is a powerful tool for traversing the chemical landscape toward the intended product. For group 4 metal oxide nanocrystals, the development of complex multimetallic heterostructures is still a challenge, partly due to the lack of kinetic and mechanistic understanding. Here, we study the reaction kinetics of the nonaqueous synthesis of titanium, zirconium, and hafnium oxide nanocrystals, from the decomposition of metal isopropoxide and metal halide, in the presence of tri-n-octylphosphine oxide (TOPO). The reaction rate depends on the metal: Ti ≫ Zr > Hf. While titanium follows an SN1 substitution mechanism, zirconium and hafnium follow an auto-catalyzed E1 elimination. In both cases, the reaction kinetics can be tuned by varying the amount of TOPO or the chloride content due to their impact on the electronic structure of the transition state of the rate-determining step. The proposed mechanism was shown to be consistent with kinetic modeling of the data for different metal concentrations. This deeper understanding of group 4 metal oxide nanocrystal formation will facilitate access to novel heterostructures relevant for optical, catalytic, and electronic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信