自底向上合成具有磁性涡状自旋构型的金属CoNi纳米片。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-04-23 eCollection Date: 2025-07-01 DOI:10.1002/smsc.202500111
Mena-Alexander Kräenbring, Konstantin Bomm, Georg Bendt, Hanna Pazniak, Benjamin Zingsem, Thomas Feggeler, Sebastian Wintz, Simon Kempkens, Marina Spasova, Stephan Schulz, Michael Farle, Ulf Wiedwald
{"title":"自底向上合成具有磁性涡状自旋构型的金属CoNi纳米片。","authors":"Mena-Alexander Kräenbring, Konstantin Bomm, Georg Bendt, Hanna Pazniak, Benjamin Zingsem, Thomas Feggeler, Sebastian Wintz, Simon Kempkens, Marina Spasova, Stephan Schulz, Michael Farle, Ulf Wiedwald","doi":"10.1002/smsc.202500111","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic nanoplatelets hold significant potential for various technical applications due to their ability to switch between a fully magnetized state with high magnetization and a vortex-like configuration that eliminates stray fields in the absence of an external field. This study presents the synthesis of uniform CoNi nanoplatelets through the topotactic reduction of metal hydroxides using hydrogen plasma. The reduction process is analyzed via magnetometry, leveraging the transition from paramagnetic hydroxide to ferromagnetic metal. Lorentz transmission electron microscopy and scanning transmission X-ray microscopy confirm the presence of magnetic vortex-like structures in isolated Co<sub>0.85</sub>Ni<sub>0.15</sub> nanoplatelets at ambient temperature. Additionally, micromagnetic simulations are conducted to further explore the magnetic properties of the nanoplatelets, revealing the formation of magnetic vortex remanent states at diameters between 200 nm and 1 μm and a thickness of around 12 nm. Notably, structural defects and thickness variations do not directly destabilize the magnetic vortex configurations.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 7","pages":"2500111"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257897/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bottom-Up Synthesis of Metallic CoNi Nanoplatelets with Magnetic Vortex-Like Spin Configurations.\",\"authors\":\"Mena-Alexander Kräenbring, Konstantin Bomm, Georg Bendt, Hanna Pazniak, Benjamin Zingsem, Thomas Feggeler, Sebastian Wintz, Simon Kempkens, Marina Spasova, Stephan Schulz, Michael Farle, Ulf Wiedwald\",\"doi\":\"10.1002/smsc.202500111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic nanoplatelets hold significant potential for various technical applications due to their ability to switch between a fully magnetized state with high magnetization and a vortex-like configuration that eliminates stray fields in the absence of an external field. This study presents the synthesis of uniform CoNi nanoplatelets through the topotactic reduction of metal hydroxides using hydrogen plasma. The reduction process is analyzed via magnetometry, leveraging the transition from paramagnetic hydroxide to ferromagnetic metal. Lorentz transmission electron microscopy and scanning transmission X-ray microscopy confirm the presence of magnetic vortex-like structures in isolated Co<sub>0.85</sub>Ni<sub>0.15</sub> nanoplatelets at ambient temperature. Additionally, micromagnetic simulations are conducted to further explore the magnetic properties of the nanoplatelets, revealing the formation of magnetic vortex remanent states at diameters between 200 nm and 1 μm and a thickness of around 12 nm. Notably, structural defects and thickness variations do not directly destabilize the magnetic vortex configurations.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 7\",\"pages\":\"2500111\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202500111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁性纳米片在各种技术应用中具有巨大的潜力,因为它们能够在具有高磁化强度的完全磁化状态和在没有外场的情况下消除杂散场的涡状结构之间切换。本研究利用氢等离子体对金属氢氧化物进行拓扑定向还原,合成了均匀的CoNi纳米薄片。还原过程通过磁强计分析,利用从顺磁性氢氧化物到铁磁性金属的转变。洛伦兹透射电子显微镜和扫描透射x射线显微镜证实,在环境温度下,分离的Co0.85Ni0.15纳米薄片中存在磁性涡状结构。此外,通过微磁模拟进一步探讨了纳米薄片的磁性能,揭示了在直径为200 ~ 1 μm、厚度为12 nm左右的纳米薄片上形成的磁涡流残余态。值得注意的是,结构缺陷和厚度变化不会直接破坏磁涡结构的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bottom-Up Synthesis of Metallic CoNi Nanoplatelets with Magnetic Vortex-Like Spin Configurations.

Bottom-Up Synthesis of Metallic CoNi Nanoplatelets with Magnetic Vortex-Like Spin Configurations.

Bottom-Up Synthesis of Metallic CoNi Nanoplatelets with Magnetic Vortex-Like Spin Configurations.

Bottom-Up Synthesis of Metallic CoNi Nanoplatelets with Magnetic Vortex-Like Spin Configurations.

Magnetic nanoplatelets hold significant potential for various technical applications due to their ability to switch between a fully magnetized state with high magnetization and a vortex-like configuration that eliminates stray fields in the absence of an external field. This study presents the synthesis of uniform CoNi nanoplatelets through the topotactic reduction of metal hydroxides using hydrogen plasma. The reduction process is analyzed via magnetometry, leveraging the transition from paramagnetic hydroxide to ferromagnetic metal. Lorentz transmission electron microscopy and scanning transmission X-ray microscopy confirm the presence of magnetic vortex-like structures in isolated Co0.85Ni0.15 nanoplatelets at ambient temperature. Additionally, micromagnetic simulations are conducted to further explore the magnetic properties of the nanoplatelets, revealing the formation of magnetic vortex remanent states at diameters between 200 nm and 1 μm and a thickness of around 12 nm. Notably, structural defects and thickness variations do not directly destabilize the magnetic vortex configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信