利用飞秒脉冲对动态亚细胞室进行实时和定点扰动。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-05-22 eCollection Date: 2025-07-01 DOI:10.1002/smsc.202500166
Seohee Ma, Bin Dong, Matthew G Clark, R Michael Everly, Shivam Mahapatra, Chi Zhang
{"title":"利用飞秒脉冲对动态亚细胞室进行实时和定点扰动。","authors":"Seohee Ma, Bin Dong, Matthew G Clark, R Michael Everly, Shivam Mahapatra, Chi Zhang","doi":"10.1002/smsc.202500166","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding laser interactions with subcellular compartments is crucial for advancing optical microscopy, phototherapy, and optogenetics. While continuous-wave lasers rely on linear absorption, femtosecond (fs) lasers enable nonlinear multiphoton absorption confined to the laser focus, offering high axial precision. However, current fs laser delivery methods lack the ability to target dynamic molecular entities and automate target selection, making them incapable of performing real-time perturbation of mobile or complexly distributed biomolecules. Additionally, existing technologies separate fs pulse delivery and imaging, preventing simultaneous recording of cellular responses. To overcome these challenges, this study introduces fs real-time precision opto-control (fs-RPOC), which integrates a laser scanning microscope with a closed-loop feedback mechanism for automated, chemically selective subcellular perturbation. Fs-RPOC achieves superior spatial precision and fast response time, enabling single- and sub-organelle microsurgery of dynamic targets and localized molecular modulation. By applying a pulse-picking method, fs-RPOC independently controls laser average and peak power at any desired subcellular compartment. Targeting mitochondria, fs-RPOC reveals site-specific molecular responses resulting from fs-laser-induced reactive oxygen species formation, H<sub>2</sub>O<sub>2</sub> diffusion, and low-density plasma generation. These findings offer new insights into fs laser interactions with subcellular compartments and demonstrate fs-RPOC's potential for precise molecular and organelle regulation.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 7","pages":"2500166"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257886/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-Time and Site-Specific Perturbation of Dynamic Subcellular Compartments Using Femtosecond Pulses.\",\"authors\":\"Seohee Ma, Bin Dong, Matthew G Clark, R Michael Everly, Shivam Mahapatra, Chi Zhang\",\"doi\":\"10.1002/smsc.202500166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding laser interactions with subcellular compartments is crucial for advancing optical microscopy, phototherapy, and optogenetics. While continuous-wave lasers rely on linear absorption, femtosecond (fs) lasers enable nonlinear multiphoton absorption confined to the laser focus, offering high axial precision. However, current fs laser delivery methods lack the ability to target dynamic molecular entities and automate target selection, making them incapable of performing real-time perturbation of mobile or complexly distributed biomolecules. Additionally, existing technologies separate fs pulse delivery and imaging, preventing simultaneous recording of cellular responses. To overcome these challenges, this study introduces fs real-time precision opto-control (fs-RPOC), which integrates a laser scanning microscope with a closed-loop feedback mechanism for automated, chemically selective subcellular perturbation. Fs-RPOC achieves superior spatial precision and fast response time, enabling single- and sub-organelle microsurgery of dynamic targets and localized molecular modulation. By applying a pulse-picking method, fs-RPOC independently controls laser average and peak power at any desired subcellular compartment. Targeting mitochondria, fs-RPOC reveals site-specific molecular responses resulting from fs-laser-induced reactive oxygen species formation, H<sub>2</sub>O<sub>2</sub> diffusion, and low-density plasma generation. These findings offer new insights into fs laser interactions with subcellular compartments and demonstrate fs-RPOC's potential for precise molecular and organelle regulation.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 7\",\"pages\":\"2500166\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202500166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解激光与亚细胞区室的相互作用对于推进光学显微镜、光疗和光遗传学至关重要。而连续波激光器依赖于线性吸收,飞秒(fs)激光器使非线性多光子吸收限制在激光聚焦,提供高轴向精度。然而,目前的激光递送方法缺乏针对动态分子实体和自动靶标选择的能力,这使得它们无法对移动或复杂分布的生物分子进行实时扰动。此外,现有技术将脉冲传输和成像分开,无法同时记录细胞反应。为了克服这些挑战,本研究引入了fs实时精确光控(fs- rpoc),它将激光扫描显微镜与闭环反馈机制集成在一起,用于自动化,化学选择性亚细胞扰动。Fs-RPOC具有优越的空间精度和快速的响应时间,可实现动态靶点的单细胞器和亚细胞器显微手术和局部分子调节。通过应用脉冲拾取方法,fs-RPOC可以独立控制任意亚细胞区室的激光平均和峰值功率。以线粒体为靶点,fs-RPOC揭示了由fs激光诱导的活性氧形成、H2O2扩散和低密度等离子体产生的位点特异性分子反应。这些发现为fs激光与亚细胞区室的相互作用提供了新的见解,并证明了fs- rpoc在精确分子和细胞器调节方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time and Site-Specific Perturbation of Dynamic Subcellular Compartments Using Femtosecond Pulses.

Understanding laser interactions with subcellular compartments is crucial for advancing optical microscopy, phototherapy, and optogenetics. While continuous-wave lasers rely on linear absorption, femtosecond (fs) lasers enable nonlinear multiphoton absorption confined to the laser focus, offering high axial precision. However, current fs laser delivery methods lack the ability to target dynamic molecular entities and automate target selection, making them incapable of performing real-time perturbation of mobile or complexly distributed biomolecules. Additionally, existing technologies separate fs pulse delivery and imaging, preventing simultaneous recording of cellular responses. To overcome these challenges, this study introduces fs real-time precision opto-control (fs-RPOC), which integrates a laser scanning microscope with a closed-loop feedback mechanism for automated, chemically selective subcellular perturbation. Fs-RPOC achieves superior spatial precision and fast response time, enabling single- and sub-organelle microsurgery of dynamic targets and localized molecular modulation. By applying a pulse-picking method, fs-RPOC independently controls laser average and peak power at any desired subcellular compartment. Targeting mitochondria, fs-RPOC reveals site-specific molecular responses resulting from fs-laser-induced reactive oxygen species formation, H2O2 diffusion, and low-density plasma generation. These findings offer new insights into fs laser interactions with subcellular compartments and demonstrate fs-RPOC's potential for precise molecular and organelle regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信