Osama R Shahin, Hamoud H Alshammari, Raed N Alabdali, Ahmed M Salaheldin, Neven Saleh
{"title":"基于深度学习和特征融合的疟疾检测自动化多模型框架。","authors":"Osama R Shahin, Hamoud H Alshammari, Raed N Alabdali, Ahmed M Salaheldin, Neven Saleh","doi":"10.1038/s41598-025-04784-w","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria remains a critical global health challenge, particularly in tropical and subtropical regions. While traditional methods for diagnosis are effective, they face some limitations related to accuracy, time consumption, and manual effort. This study proposes an advanced, automated diagnostic framework for malaria detection using a multi-model architecture integrating deep learning and machine learning techniques. The framework employs a transfer learning approach that incorporates ResNet 50, VGG16, and DenseNet-201 for feature extraction. This is followed by feature fusion and dimensionality reduction via principal component analysis. A hybrid scheme that combines support vector machine and long short-term memory networks is used for classification. A majority voting mechanism aggregates outputs from all models to enhance prediction robustness. The approach was validated on a publicly available dataset comprising 27,558 microscopic thin blood smear images. The results demonstrated superior performance, achieving an accuracy of 96.47%, sensitivity of 96.03%, specificity of 96.90%, precision of 96.88%, and F1-score of 96.45% using the majority voting ensemble. Comparative analysis highlights the framework's advancements over existing methods in diagnostic reliability and computational efficiency. This work underscores the potential of AI-driven solutions in advancing malaria diagnostics and lays the foundation for applications in other blood-borne diseases.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"25672"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264003/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated multi-model framework for malaria detection using deep learning and feature fusion.\",\"authors\":\"Osama R Shahin, Hamoud H Alshammari, Raed N Alabdali, Ahmed M Salaheldin, Neven Saleh\",\"doi\":\"10.1038/s41598-025-04784-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malaria remains a critical global health challenge, particularly in tropical and subtropical regions. While traditional methods for diagnosis are effective, they face some limitations related to accuracy, time consumption, and manual effort. This study proposes an advanced, automated diagnostic framework for malaria detection using a multi-model architecture integrating deep learning and machine learning techniques. The framework employs a transfer learning approach that incorporates ResNet 50, VGG16, and DenseNet-201 for feature extraction. This is followed by feature fusion and dimensionality reduction via principal component analysis. A hybrid scheme that combines support vector machine and long short-term memory networks is used for classification. A majority voting mechanism aggregates outputs from all models to enhance prediction robustness. The approach was validated on a publicly available dataset comprising 27,558 microscopic thin blood smear images. The results demonstrated superior performance, achieving an accuracy of 96.47%, sensitivity of 96.03%, specificity of 96.90%, precision of 96.88%, and F1-score of 96.45% using the majority voting ensemble. Comparative analysis highlights the framework's advancements over existing methods in diagnostic reliability and computational efficiency. This work underscores the potential of AI-driven solutions in advancing malaria diagnostics and lays the foundation for applications in other blood-borne diseases.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"25672\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264003/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-04784-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-04784-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Automated multi-model framework for malaria detection using deep learning and feature fusion.
Malaria remains a critical global health challenge, particularly in tropical and subtropical regions. While traditional methods for diagnosis are effective, they face some limitations related to accuracy, time consumption, and manual effort. This study proposes an advanced, automated diagnostic framework for malaria detection using a multi-model architecture integrating deep learning and machine learning techniques. The framework employs a transfer learning approach that incorporates ResNet 50, VGG16, and DenseNet-201 for feature extraction. This is followed by feature fusion and dimensionality reduction via principal component analysis. A hybrid scheme that combines support vector machine and long short-term memory networks is used for classification. A majority voting mechanism aggregates outputs from all models to enhance prediction robustness. The approach was validated on a publicly available dataset comprising 27,558 microscopic thin blood smear images. The results demonstrated superior performance, achieving an accuracy of 96.47%, sensitivity of 96.03%, specificity of 96.90%, precision of 96.88%, and F1-score of 96.45% using the majority voting ensemble. Comparative analysis highlights the framework's advancements over existing methods in diagnostic reliability and computational efficiency. This work underscores the potential of AI-driven solutions in advancing malaria diagnostics and lays the foundation for applications in other blood-borne diseases.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.