通过机器学习的镜头在活细胞中进行模式识别。

IF 3.6 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Open Biology Pub Date : 2025-07-01 Epub Date: 2025-07-16 DOI:10.1098/rsob.240377
Frank Britto Bisso, Rodrigo Aguilar, Durga Shree, Yinan Zhu, Mijael Espinoza, Benjamin Diaz, Christian Cuba Samaniego
{"title":"通过机器学习的镜头在活细胞中进行模式识别。","authors":"Frank Britto Bisso, Rodrigo Aguilar, Durga Shree, Yinan Zhu, Mijael Espinoza, Benjamin Diaz, Christian Cuba Samaniego","doi":"10.1098/rsob.240377","DOIUrl":null,"url":null,"abstract":"<p><p>At a coarse level, pattern recognition within cells involves sensing of environmental signals by surface receptors, and activating downstream signalling pathways that ultimately drive a transcriptome response, enabling biological functions such as differentiation, migration, proliferation, apoptosis or cell-type specification. This kind of decision-making process resembles a classification task that, inspired by machine learning concepts, can be understood in terms of a decision boundary: the combination of inputs relative to the classification region defined by this boundary defines context-specific responses. In this report, we contextualize machine learning concepts within a biological framework to explore the structural and functional similarities (and differences) between artificial neural networks, signalling pathways and gene regulatory networks. We take a preliminary look at neural network architectures that may better suit biological classification tasks, explore how learning fits into this paradigm, and address the role of competitive binding in cellular computation. Altogether, we envision a new research direction at the intersection of systems and synthetic biology, advancing our understanding of the inherent computational capacities of signalling pathways and gene regulatory networks.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"15 7","pages":"240377"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303112/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pattern recognition in living cells through the lens of machine learning.\",\"authors\":\"Frank Britto Bisso, Rodrigo Aguilar, Durga Shree, Yinan Zhu, Mijael Espinoza, Benjamin Diaz, Christian Cuba Samaniego\",\"doi\":\"10.1098/rsob.240377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>At a coarse level, pattern recognition within cells involves sensing of environmental signals by surface receptors, and activating downstream signalling pathways that ultimately drive a transcriptome response, enabling biological functions such as differentiation, migration, proliferation, apoptosis or cell-type specification. This kind of decision-making process resembles a classification task that, inspired by machine learning concepts, can be understood in terms of a decision boundary: the combination of inputs relative to the classification region defined by this boundary defines context-specific responses. In this report, we contextualize machine learning concepts within a biological framework to explore the structural and functional similarities (and differences) between artificial neural networks, signalling pathways and gene regulatory networks. We take a preliminary look at neural network architectures that may better suit biological classification tasks, explore how learning fits into this paradigm, and address the role of competitive binding in cellular computation. Altogether, we envision a new research direction at the intersection of systems and synthetic biology, advancing our understanding of the inherent computational capacities of signalling pathways and gene regulatory networks.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"15 7\",\"pages\":\"240377\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.240377\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240377","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

粗略地说,细胞内的模式识别包括通过表面受体感知环境信号,并激活最终驱动转录组反应的下游信号通路,从而实现分化、迁移、增殖、凋亡或细胞类型规范等生物学功能。这种决策过程类似于一个分类任务,受机器学习概念的启发,可以根据决策边界来理解:相对于该边界定义的分类区域的输入组合定义了特定于上下文的响应。在本报告中,我们将机器学习概念置于生物学框架中,以探索人工神经网络,信号通路和基因调控网络之间的结构和功能相似性(和差异性)。我们初步探讨了可能更适合生物分类任务的神经网络架构,探讨了学习如何适应这种范式,并解决了竞争绑定在细胞计算中的作用。总之,我们设想了一个新的研究方向,在系统和合成生物学的交叉点,推进我们对信号通路和基因调控网络的固有计算能力的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pattern recognition in living cells through the lens of machine learning.

Pattern recognition in living cells through the lens of machine learning.

Pattern recognition in living cells through the lens of machine learning.

Pattern recognition in living cells through the lens of machine learning.

At a coarse level, pattern recognition within cells involves sensing of environmental signals by surface receptors, and activating downstream signalling pathways that ultimately drive a transcriptome response, enabling biological functions such as differentiation, migration, proliferation, apoptosis or cell-type specification. This kind of decision-making process resembles a classification task that, inspired by machine learning concepts, can be understood in terms of a decision boundary: the combination of inputs relative to the classification region defined by this boundary defines context-specific responses. In this report, we contextualize machine learning concepts within a biological framework to explore the structural and functional similarities (and differences) between artificial neural networks, signalling pathways and gene regulatory networks. We take a preliminary look at neural network architectures that may better suit biological classification tasks, explore how learning fits into this paradigm, and address the role of competitive binding in cellular computation. Altogether, we envision a new research direction at the intersection of systems and synthetic biology, advancing our understanding of the inherent computational capacities of signalling pathways and gene regulatory networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Biology
Open Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.00
自引率
1.70%
发文量
136
审稿时长
6-12 weeks
期刊介绍: Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信