空间环境中单个细胞的高分辨率映射。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jincan Ke, Jian Xu, Jia Liu, Yumeng Yang, Chenkai Guo, Bingbing Xie, Guizhong Cui, Guangdun Peng, Shengbao Suo
{"title":"空间环境中单个细胞的高分辨率映射。","authors":"Jincan Ke, Jian Xu, Jia Liu, Yumeng Yang, Chenkai Guo, Bingbing Xie, Guizhong Cui, Guangdun Peng, Shengbao Suo","doi":"10.1038/s41467-025-61667-4","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomic technologies have emerged as pivotal tools for elucidating molecular regulation and cellular interplay within the intricate tissue microenvironment, but hampered by insufficient gene recovery or challenges in achieving intact single-cell resolution. Here, we develop Cellular Mapping of Attributes with Position (CMAP), a method that efficiently maps large-scale individual cells to their precise spatial locations by integrating single-cell and spatial data through a divide--and--conquer strategy. Analysis of both simulated and real datasets shows that CMAP performs effectively and is adaptable across diverse data types and sequencing platforms. Particularly, CMAP handles scenarios well where discrepancies exist between single-cell and spatial transcriptomics data. Our findings underscore CMAP's capacity to endow single-cells with exact spatial coordinates, facilitating the dissection of nuanced spatial-organ-specific endothelial cell heterogeneity, as well as the intricate cancer immune microenvironments that elude conventional single-cell or spatial data analysis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6533"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264276/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-resolution mapping of single cells in spatial context.\",\"authors\":\"Jincan Ke, Jian Xu, Jia Liu, Yumeng Yang, Chenkai Guo, Bingbing Xie, Guizhong Cui, Guangdun Peng, Shengbao Suo\",\"doi\":\"10.1038/s41467-025-61667-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatially resolved transcriptomic technologies have emerged as pivotal tools for elucidating molecular regulation and cellular interplay within the intricate tissue microenvironment, but hampered by insufficient gene recovery or challenges in achieving intact single-cell resolution. Here, we develop Cellular Mapping of Attributes with Position (CMAP), a method that efficiently maps large-scale individual cells to their precise spatial locations by integrating single-cell and spatial data through a divide--and--conquer strategy. Analysis of both simulated and real datasets shows that CMAP performs effectively and is adaptable across diverse data types and sequencing platforms. Particularly, CMAP handles scenarios well where discrepancies exist between single-cell and spatial transcriptomics data. Our findings underscore CMAP's capacity to endow single-cells with exact spatial coordinates, facilitating the dissection of nuanced spatial-organ-specific endothelial cell heterogeneity, as well as the intricate cancer immune microenvironments that elude conventional single-cell or spatial data analysis.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"6533\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264276/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61667-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61667-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

空间分辨率转录组学技术已成为阐明复杂组织微环境中分子调控和细胞相互作用的关键工具,但由于基因恢复不足或实现完整单细胞分辨率的挑战而受到阻碍。在这里,我们开发了带有位置属性的细胞映射(CMAP),这是一种通过分而治之策略整合单细胞和空间数据,有效地将大规模单个细胞映射到其精确空间位置的方法。模拟和真实数据集的分析表明,CMAP在不同的数据类型和测序平台上都具有良好的适应性。特别是,CMAP可以很好地处理单细胞和空间转录组学数据之间存在差异的情况。我们的研究结果强调了CMAP赋予单细胞精确空间坐标的能力,促进了细致的空间器官特异性内皮细胞异质性的解剖,以及复杂的癌症免疫微环境,这些都是传统的单细胞或空间数据分析所无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution mapping of single cells in spatial context.

Spatially resolved transcriptomic technologies have emerged as pivotal tools for elucidating molecular regulation and cellular interplay within the intricate tissue microenvironment, but hampered by insufficient gene recovery or challenges in achieving intact single-cell resolution. Here, we develop Cellular Mapping of Attributes with Position (CMAP), a method that efficiently maps large-scale individual cells to their precise spatial locations by integrating single-cell and spatial data through a divide--and--conquer strategy. Analysis of both simulated and real datasets shows that CMAP performs effectively and is adaptable across diverse data types and sequencing platforms. Particularly, CMAP handles scenarios well where discrepancies exist between single-cell and spatial transcriptomics data. Our findings underscore CMAP's capacity to endow single-cells with exact spatial coordinates, facilitating the dissection of nuanced spatial-organ-specific endothelial cell heterogeneity, as well as the intricate cancer immune microenvironments that elude conventional single-cell or spatial data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信