{"title":"用于监测CCR2配体在培养和体内时空动态的遗传编码生物传感器。","authors":"Xian Xiao, Chenyu Wang, Xun Guo, Fengxue Xi, Qiuling Qian, Guoteng Liang, Ming Chen, Xiaoting Sun, Balint Szabo, Miao Jing, Kiryl D Piatkevich","doi":"10.1038/s41592-025-02742-y","DOIUrl":null,"url":null,"abstract":"<p><p>Chemokines regulate immune cell migration in development, homeostasis and inflammation, but the precise spatiotemporal pattern of chemokine release in vivo remains elusive due to the constraints of existing detection methodologies. Here, we report the engineering and characterization of a genetically encoded green fluorescent chemokine sensor, named CRAFi-CCR2, which utilizes the CCR2 receptor as a sensing moiety. In astrocytes, hCRAFi-CCR2, derived from the human CCR2B receptor, exhibited ~300% increase in fluorescence in response to mCCL2, with nanomolar affinity (2.5 nM). Activation of hCRAFi-CCR2 did not affect downstream signaling pathways, such as calcium mobilization and receptor internalization. Using this sensor, we performed 17-20 h of real-time imaging to observe endogenous mCCL2 release under inflammatory conditions, both in cell culture and in mice. In mouse brain, we observed spatial heterogeneity of CCL2 signal response on a scale of about 20-50 µm, highlighting the complexity of the immune system's spatiotemporal signaling.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetically encoded biosensor for monitoring spatiotemporal dynamics of CCR2 ligands in culture and in vivo.\",\"authors\":\"Xian Xiao, Chenyu Wang, Xun Guo, Fengxue Xi, Qiuling Qian, Guoteng Liang, Ming Chen, Xiaoting Sun, Balint Szabo, Miao Jing, Kiryl D Piatkevich\",\"doi\":\"10.1038/s41592-025-02742-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemokines regulate immune cell migration in development, homeostasis and inflammation, but the precise spatiotemporal pattern of chemokine release in vivo remains elusive due to the constraints of existing detection methodologies. Here, we report the engineering and characterization of a genetically encoded green fluorescent chemokine sensor, named CRAFi-CCR2, which utilizes the CCR2 receptor as a sensing moiety. In astrocytes, hCRAFi-CCR2, derived from the human CCR2B receptor, exhibited ~300% increase in fluorescence in response to mCCL2, with nanomolar affinity (2.5 nM). Activation of hCRAFi-CCR2 did not affect downstream signaling pathways, such as calcium mobilization and receptor internalization. Using this sensor, we performed 17-20 h of real-time imaging to observe endogenous mCCL2 release under inflammatory conditions, both in cell culture and in mice. In mouse brain, we observed spatial heterogeneity of CCL2 signal response on a scale of about 20-50 µm, highlighting the complexity of the immune system's spatiotemporal signaling.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02742-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02742-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Genetically encoded biosensor for monitoring spatiotemporal dynamics of CCR2 ligands in culture and in vivo.
Chemokines regulate immune cell migration in development, homeostasis and inflammation, but the precise spatiotemporal pattern of chemokine release in vivo remains elusive due to the constraints of existing detection methodologies. Here, we report the engineering and characterization of a genetically encoded green fluorescent chemokine sensor, named CRAFi-CCR2, which utilizes the CCR2 receptor as a sensing moiety. In astrocytes, hCRAFi-CCR2, derived from the human CCR2B receptor, exhibited ~300% increase in fluorescence in response to mCCL2, with nanomolar affinity (2.5 nM). Activation of hCRAFi-CCR2 did not affect downstream signaling pathways, such as calcium mobilization and receptor internalization. Using this sensor, we performed 17-20 h of real-time imaging to observe endogenous mCCL2 release under inflammatory conditions, both in cell culture and in mice. In mouse brain, we observed spatial heterogeneity of CCL2 signal response on a scale of about 20-50 µm, highlighting the complexity of the immune system's spatiotemporal signaling.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.