不同水源对灵芝固态发酵的影响不同。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Wei Yi, Qingmei Xiao, Mi Wei, Feitong Li, Longyu Wang, Jian He, Ang Ren, Ailiang Jiang, Ran Tao, Bangchao Zhong, Qin He
{"title":"不同水源对灵芝固态发酵的影响不同。","authors":"Wei Yi, Qingmei Xiao, Mi Wei, Feitong Li, Longyu Wang, Jian He, Ang Ren, Ailiang Jiang, Ran Tao, Bangchao Zhong, Qin He","doi":"10.1093/lambio/ovaf095","DOIUrl":null,"url":null,"abstract":"<p><p>Water is essential in solid-state fermentation (SSF), but the impact of different water sources on SSF efficiency remains unclear. This study investigated the effects of different water sources on water-supply SSF of Ganoderma lucidum. The results showed that supplementation with normal saline led to the highest levels of laccase, CMCase, FPA activities, and biomass of G. lucidum (93.47, 140.34, 172.42 U/g, and 0.19 g/g, respectively), almost all significantly higher than those in the tap water group (83.57, 126.36, 167.17 U/g, and 0.18 g/g) and the deionized water group (77.25, 120.91, 145.50 U/g, and 0.16 g/g). Normal saline also significantly increased the capillary water content during SSF, which was 5.38% and 19.05% higher than that in the tap water and deionized water groups, respectively. Furthermore, the relaxation time of capillary water in the normal saline group decreased by 49.09%, a reduction that was higher than those observed in the tap water group (43.41%) and the deionized water group (29.56%). In conclusion, normal saline demonstrated distinct advantages in enhancing SSF efficiency, thus providing a scientific basis for the selection of water sources in the fermentation of G. lucidum and other microorganisms.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water supply from various sources has different effects on solid-state fermentation of Ganoderma lucidum.\",\"authors\":\"Wei Yi, Qingmei Xiao, Mi Wei, Feitong Li, Longyu Wang, Jian He, Ang Ren, Ailiang Jiang, Ran Tao, Bangchao Zhong, Qin He\",\"doi\":\"10.1093/lambio/ovaf095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water is essential in solid-state fermentation (SSF), but the impact of different water sources on SSF efficiency remains unclear. This study investigated the effects of different water sources on water-supply SSF of Ganoderma lucidum. The results showed that supplementation with normal saline led to the highest levels of laccase, CMCase, FPA activities, and biomass of G. lucidum (93.47, 140.34, 172.42 U/g, and 0.19 g/g, respectively), almost all significantly higher than those in the tap water group (83.57, 126.36, 167.17 U/g, and 0.18 g/g) and the deionized water group (77.25, 120.91, 145.50 U/g, and 0.16 g/g). Normal saline also significantly increased the capillary water content during SSF, which was 5.38% and 19.05% higher than that in the tap water and deionized water groups, respectively. Furthermore, the relaxation time of capillary water in the normal saline group decreased by 49.09%, a reduction that was higher than those observed in the tap water group (43.41%) and the deionized water group (29.56%). In conclusion, normal saline demonstrated distinct advantages in enhancing SSF efficiency, thus providing a scientific basis for the selection of water sources in the fermentation of G. lucidum and other microorganisms.</p>\",\"PeriodicalId\":17962,\"journal\":{\"name\":\"Letters in Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/lambio/ovaf095\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovaf095","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水在固态发酵中是必不可少的,但不同水源对固态发酵效率的影响尚不清楚。本研究研究了不同水源对灵芝供水SSF的影响。结果表明:添加生理盐水时,灵芝的漆酶、CMCase、FPA活性和生物量最高(分别为93.47、140.34、172.42和0.19 g/g),均显著高于自来水组(83.57、126.36、167.17和0.18 g/g)和去离子水组(77.25、120.91、145.50和0.16 g/g);生理盐水也显著增加了SSF期间毛细血管含水量,分别比自来水组和去离子水组高5.38%和19.05%。生理盐水组毛细血管水弛豫时间缩短49.09%,明显高于自来水组(43.41%)和去离子水组(29.56%)。综上所述,生理盐水在提高SSF效率方面具有明显优势,为灵芝等微生物发酵过程中水源的选择提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water supply from various sources has different effects on solid-state fermentation of Ganoderma lucidum.

Water is essential in solid-state fermentation (SSF), but the impact of different water sources on SSF efficiency remains unclear. This study investigated the effects of different water sources on water-supply SSF of Ganoderma lucidum. The results showed that supplementation with normal saline led to the highest levels of laccase, CMCase, FPA activities, and biomass of G. lucidum (93.47, 140.34, 172.42 U/g, and 0.19 g/g, respectively), almost all significantly higher than those in the tap water group (83.57, 126.36, 167.17 U/g, and 0.18 g/g) and the deionized water group (77.25, 120.91, 145.50 U/g, and 0.16 g/g). Normal saline also significantly increased the capillary water content during SSF, which was 5.38% and 19.05% higher than that in the tap water and deionized water groups, respectively. Furthermore, the relaxation time of capillary water in the normal saline group decreased by 49.09%, a reduction that was higher than those observed in the tap water group (43.41%) and the deionized water group (29.56%). In conclusion, normal saline demonstrated distinct advantages in enhancing SSF efficiency, thus providing a scientific basis for the selection of water sources in the fermentation of G. lucidum and other microorganisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Applied Microbiology
Letters in Applied Microbiology 工程技术-生物工程与应用微生物
CiteScore
4.40
自引率
4.20%
发文量
225
审稿时长
3.3 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信