{"title":"肿瘤指示的谷氨酰胺合成在癌症相关成纤维细胞中促进肿瘤前巨噬细胞。","authors":"Xiaoyun Li, Sofie Hedlund Møller, Jaeoh Park, Yu-Ming Chuang, Pei-Chun Hsueh, Tzu-Hsuan Chang, Kung-Chi Kao, Hector Gallart-Ayala, Yi-Hao Wang, Jhan-Jie Peng, Alessio Bevilacqua, Yi-Ru Yu, Zhiyu Li, Yann Kieffer, Domitille Peigney, Hugo Croizer, Yingxi Xu, Alfred Zippelius, Isabel C Lopez-Mejia, Lluis Fajas, Fatima Mechta-Grigoriou, Julijana Ivanisevic, Zhengtao Xiao, Ming-Chih Ho, Ying-Chun Shen, Ping-Chih Ho","doi":"10.1084/jem.20241426","DOIUrl":null,"url":null,"abstract":"<p><p>In the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play a crucial role in promoting tumor progression by creating an immunosuppressive environment through cytokine secretion and antigen presentation. While previous studies have demonstrated that CAFs exhibit distinct metabolic profiles compared with normal fibroblasts, it remains unclear how these metabolic programs influence the immune landscape within tumors and which factors drive metabolic reprogramming in CAFs. Here, we found that glutamine synthesis by CAFs promotes the polarization of pro-tumorigenic tumor-associated macrophages (TAMs) and supports tumor growth by altering TAM composition, highlighting the pivotal role of CAFs in shaping the immunosuppressive TME. Mechanistically, we found that tumor-derived palmitic acid activates a signaling cascade involving TLR4, Syk, and NF-κB in fibroblasts, leading to inflammatory CAF polarization and IL-6-induced glutamine synthesis. These findings uncover a novel metabolic symbiosis whereby tumor cells manipulate TAM polarization through CAF-mediated glutamine metabolism, presenting potential therapeutic targets for cancer immunotherapy.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 9","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumor-instructed glutamine synthesis in cancer-associated fibroblasts promotes pro-tumor macrophages.\",\"authors\":\"Xiaoyun Li, Sofie Hedlund Møller, Jaeoh Park, Yu-Ming Chuang, Pei-Chun Hsueh, Tzu-Hsuan Chang, Kung-Chi Kao, Hector Gallart-Ayala, Yi-Hao Wang, Jhan-Jie Peng, Alessio Bevilacqua, Yi-Ru Yu, Zhiyu Li, Yann Kieffer, Domitille Peigney, Hugo Croizer, Yingxi Xu, Alfred Zippelius, Isabel C Lopez-Mejia, Lluis Fajas, Fatima Mechta-Grigoriou, Julijana Ivanisevic, Zhengtao Xiao, Ming-Chih Ho, Ying-Chun Shen, Ping-Chih Ho\",\"doi\":\"10.1084/jem.20241426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play a crucial role in promoting tumor progression by creating an immunosuppressive environment through cytokine secretion and antigen presentation. While previous studies have demonstrated that CAFs exhibit distinct metabolic profiles compared with normal fibroblasts, it remains unclear how these metabolic programs influence the immune landscape within tumors and which factors drive metabolic reprogramming in CAFs. Here, we found that glutamine synthesis by CAFs promotes the polarization of pro-tumorigenic tumor-associated macrophages (TAMs) and supports tumor growth by altering TAM composition, highlighting the pivotal role of CAFs in shaping the immunosuppressive TME. Mechanistically, we found that tumor-derived palmitic acid activates a signaling cascade involving TLR4, Syk, and NF-κB in fibroblasts, leading to inflammatory CAF polarization and IL-6-induced glutamine synthesis. These findings uncover a novel metabolic symbiosis whereby tumor cells manipulate TAM polarization through CAF-mediated glutamine metabolism, presenting potential therapeutic targets for cancer immunotherapy.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"222 9\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20241426\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241426","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Tumor-instructed glutamine synthesis in cancer-associated fibroblasts promotes pro-tumor macrophages.
In the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play a crucial role in promoting tumor progression by creating an immunosuppressive environment through cytokine secretion and antigen presentation. While previous studies have demonstrated that CAFs exhibit distinct metabolic profiles compared with normal fibroblasts, it remains unclear how these metabolic programs influence the immune landscape within tumors and which factors drive metabolic reprogramming in CAFs. Here, we found that glutamine synthesis by CAFs promotes the polarization of pro-tumorigenic tumor-associated macrophages (TAMs) and supports tumor growth by altering TAM composition, highlighting the pivotal role of CAFs in shaping the immunosuppressive TME. Mechanistically, we found that tumor-derived palmitic acid activates a signaling cascade involving TLR4, Syk, and NF-κB in fibroblasts, leading to inflammatory CAF polarization and IL-6-induced glutamine synthesis. These findings uncover a novel metabolic symbiosis whereby tumor cells manipulate TAM polarization through CAF-mediated glutamine metabolism, presenting potential therapeutic targets for cancer immunotherapy.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.