SLC35F2通过调节CREB1的表达促进NSCLC的进展。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-08-01 Epub Date: 2025-07-14 DOI:10.1007/s10616-025-00814-7
Du Wei, Ge Wenyu, Yu Ling, Chen Hongzhe, Wang Dongmei, Xu Xinglu
{"title":"SLC35F2通过调节CREB1的表达促进NSCLC的进展。","authors":"Du Wei, Ge Wenyu, Yu Ling, Chen Hongzhe, Wang Dongmei, Xu Xinglu","doi":"10.1007/s10616-025-00814-7","DOIUrl":null,"url":null,"abstract":"<p><p>SLC35F2 has emerged as a potential oncogenic driver in non-small cell lung cancer (NSCLC), yet its mechanistic role in tumor progression remains poorly understood. This study aimed to explore the mechanism of SLC35F2 in mediating non-small cell lung cancer (NSCLC) progression through the cAMP signaling pathway. By analyzing TCGA and GEPIA databases, the present research found that SLC35F2 expression was significantly elevated in NSCLC tissues compared to normal lung tissues, with high SLC35F2 levels correlating with poor patient prognosis (P < 0.05). Functional enrichment analysis using R language revealed significant alterations in multiple pathways, including cAMP signaling, in SLC35F2-high NSCLC. Experimental validation through RT-qPCR and Western blot confirmed upregulated SLC35F2 expression in NSCLC cell lines. Knockdown of SLC35F2 inhibited cell proliferation, migration, and invasion while promoting apoptosis (P < 0.05), as demonstrated by CCK-8, EdU, colony formation, flow cytometry, TUNEL, scratch, and Transwell assays. Mechanistically, SLC35F2 suppression activated the cAMP signaling pathway, particularly through upregulation of the transcription factor CREB1. These findings suggest that SLC35F2 drives NSCLC progression by modulating the cAMP/CREB1 axis, highlighting its potential as a therapeutic target.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 4","pages":"146"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259521/pdf/","citationCount":"0","resultStr":"{\"title\":\"SLC35F2 promotes the progression of NSCLC via regulating CREB1 expression.\",\"authors\":\"Du Wei, Ge Wenyu, Yu Ling, Chen Hongzhe, Wang Dongmei, Xu Xinglu\",\"doi\":\"10.1007/s10616-025-00814-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SLC35F2 has emerged as a potential oncogenic driver in non-small cell lung cancer (NSCLC), yet its mechanistic role in tumor progression remains poorly understood. This study aimed to explore the mechanism of SLC35F2 in mediating non-small cell lung cancer (NSCLC) progression through the cAMP signaling pathway. By analyzing TCGA and GEPIA databases, the present research found that SLC35F2 expression was significantly elevated in NSCLC tissues compared to normal lung tissues, with high SLC35F2 levels correlating with poor patient prognosis (P < 0.05). Functional enrichment analysis using R language revealed significant alterations in multiple pathways, including cAMP signaling, in SLC35F2-high NSCLC. Experimental validation through RT-qPCR and Western blot confirmed upregulated SLC35F2 expression in NSCLC cell lines. Knockdown of SLC35F2 inhibited cell proliferation, migration, and invasion while promoting apoptosis (P < 0.05), as demonstrated by CCK-8, EdU, colony formation, flow cytometry, TUNEL, scratch, and Transwell assays. Mechanistically, SLC35F2 suppression activated the cAMP signaling pathway, particularly through upregulation of the transcription factor CREB1. These findings suggest that SLC35F2 drives NSCLC progression by modulating the cAMP/CREB1 axis, highlighting its potential as a therapeutic target.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 4\",\"pages\":\"146\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-025-00814-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00814-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SLC35F2已成为非小细胞肺癌(NSCLC)的潜在致癌驱动因素,但其在肿瘤进展中的机制作用仍知之甚少。本研究旨在探讨SLC35F2通过cAMP信号通路介导非小细胞肺癌(non-small cell lung cancer, NSCLC)进展的机制。通过对TCGA和GEPIA数据库的分析,本研究发现SLC35F2在非小细胞肺癌组织中的表达较正常肺组织明显升高,SLC35F2水平高与患者预后差相关(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLC35F2 promotes the progression of NSCLC via regulating CREB1 expression.

SLC35F2 has emerged as a potential oncogenic driver in non-small cell lung cancer (NSCLC), yet its mechanistic role in tumor progression remains poorly understood. This study aimed to explore the mechanism of SLC35F2 in mediating non-small cell lung cancer (NSCLC) progression through the cAMP signaling pathway. By analyzing TCGA and GEPIA databases, the present research found that SLC35F2 expression was significantly elevated in NSCLC tissues compared to normal lung tissues, with high SLC35F2 levels correlating with poor patient prognosis (P < 0.05). Functional enrichment analysis using R language revealed significant alterations in multiple pathways, including cAMP signaling, in SLC35F2-high NSCLC. Experimental validation through RT-qPCR and Western blot confirmed upregulated SLC35F2 expression in NSCLC cell lines. Knockdown of SLC35F2 inhibited cell proliferation, migration, and invasion while promoting apoptosis (P < 0.05), as demonstrated by CCK-8, EdU, colony formation, flow cytometry, TUNEL, scratch, and Transwell assays. Mechanistically, SLC35F2 suppression activated the cAMP signaling pathway, particularly through upregulation of the transcription factor CREB1. These findings suggest that SLC35F2 drives NSCLC progression by modulating the cAMP/CREB1 axis, highlighting its potential as a therapeutic target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信