机械增强和自愈水凝胶:生物打印仿生甲基丙烯酸化胶原肽-黄原胶韧带再生结构。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Hongjuan Weng, Monize Caiado Decarli, Lei He, Wen Chen, Sabine van Rijt, Katrien V Bernaerts, Lorenzo Moroni
{"title":"机械增强和自愈水凝胶:生物打印仿生甲基丙烯酸化胶原肽-黄原胶韧带再生结构。","authors":"Hongjuan Weng, Monize Caiado Decarli, Lei He, Wen Chen, Sabine van Rijt, Katrien V Bernaerts, Lorenzo Moroni","doi":"10.1002/adhm.202502341","DOIUrl":null,"url":null,"abstract":"<p><p>Collagen peptide (COP) is water soluble, bioactive, and tends to be a promising alternative to collagen for tissue regeneration. However, its low viscosity and lack of readily polymerizable groups hinder its bioprinting and limit its wide applications in tissue engineering. In this study, methacrylated collagen peptide-xanthan gum (COPMA-XG) bioinks with interpenetrating networks are developed for bioprinting stable constructs, followed by stem cell differentiation. First, self-healing COPMA hydrogels are developed with rapid UV-curing and tunable mechanical properties. To increase the printability and the mechanical properties of COPMA, XG is mixed to create a set of COPMA-XG bioinks. COPMA-XG hydrogels show self-healing properties, optimal printability, and stable morphology in the medium. The bioprinted human bone marrow mesenchymal stem cells (hMSCs) laden COPMA-XG constructs are biocompatible and bioactive, with increased production of extracellular matrix, collagen type I, and scleraxis over 28 days. Overall, bioprinted COPMA-XG constructs are versatile matrices to support hMSCs proliferation and differentiation with potential for ligament tissue engineering.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2502341"},"PeriodicalIF":10.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Reinforced and Self-healing Hydrogels: Bioprinted Biomimetic Methacrylated Collagen Peptide-Xanthan Gum Constructs for Ligament Regeneration.\",\"authors\":\"Hongjuan Weng, Monize Caiado Decarli, Lei He, Wen Chen, Sabine van Rijt, Katrien V Bernaerts, Lorenzo Moroni\",\"doi\":\"10.1002/adhm.202502341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collagen peptide (COP) is water soluble, bioactive, and tends to be a promising alternative to collagen for tissue regeneration. However, its low viscosity and lack of readily polymerizable groups hinder its bioprinting and limit its wide applications in tissue engineering. In this study, methacrylated collagen peptide-xanthan gum (COPMA-XG) bioinks with interpenetrating networks are developed for bioprinting stable constructs, followed by stem cell differentiation. First, self-healing COPMA hydrogels are developed with rapid UV-curing and tunable mechanical properties. To increase the printability and the mechanical properties of COPMA, XG is mixed to create a set of COPMA-XG bioinks. COPMA-XG hydrogels show self-healing properties, optimal printability, and stable morphology in the medium. The bioprinted human bone marrow mesenchymal stem cells (hMSCs) laden COPMA-XG constructs are biocompatible and bioactive, with increased production of extracellular matrix, collagen type I, and scleraxis over 28 days. Overall, bioprinted COPMA-XG constructs are versatile matrices to support hMSCs proliferation and differentiation with potential for ligament tissue engineering.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2502341\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202502341\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502341","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

胶原蛋白肽(COP)是水溶性的,具有生物活性,是一种很有前途的替代胶原蛋白用于组织再生。然而,它的低粘度和缺乏易聚合基团阻碍了它的生物打印,限制了它在组织工程中的广泛应用。在这项研究中,具有互穿网络的甲基丙烯酸化胶原肽-黄原胶(COPMA-XG)生物墨水被开发用于生物打印稳定结构,随后用于干细胞分化。首先,开发了具有快速紫外光固化和可调力学性能的自修复COPMA水凝胶。为了提高COPMA的可印刷性和机械性能,XG被混合成一组COPMA-XG生物墨水。COPMA-XG水凝胶在介质中表现出自愈特性、最佳的可打印性和稳定的形态。携带COPMA-XG构建物的生物打印人骨髓间充质干细胞(hMSCs)具有生物相容性和生物活性,在28天内细胞外基质、I型胶原和巩膜的生成增加。总的来说,生物打印COPMA-XG构建物是支持hMSCs增殖和分化的通用基质,具有韧带组织工程的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical Reinforced and Self-healing Hydrogels: Bioprinted Biomimetic Methacrylated Collagen Peptide-Xanthan Gum Constructs for Ligament Regeneration.

Collagen peptide (COP) is water soluble, bioactive, and tends to be a promising alternative to collagen for tissue regeneration. However, its low viscosity and lack of readily polymerizable groups hinder its bioprinting and limit its wide applications in tissue engineering. In this study, methacrylated collagen peptide-xanthan gum (COPMA-XG) bioinks with interpenetrating networks are developed for bioprinting stable constructs, followed by stem cell differentiation. First, self-healing COPMA hydrogels are developed with rapid UV-curing and tunable mechanical properties. To increase the printability and the mechanical properties of COPMA, XG is mixed to create a set of COPMA-XG bioinks. COPMA-XG hydrogels show self-healing properties, optimal printability, and stable morphology in the medium. The bioprinted human bone marrow mesenchymal stem cells (hMSCs) laden COPMA-XG constructs are biocompatible and bioactive, with increased production of extracellular matrix, collagen type I, and scleraxis over 28 days. Overall, bioprinted COPMA-XG constructs are versatile matrices to support hMSCs proliferation and differentiation with potential for ligament tissue engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信