基于原子尺度DFT的下一代材料ZnS带隙调谐与量子调制研究

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-07-17 DOI:10.1039/D5RA02719E
Suneela Arif
{"title":"基于原子尺度DFT的下一代材料ZnS带隙调谐与量子调制研究","authors":"Suneela Arif","doi":"10.1039/D5RA02719E","DOIUrl":null,"url":null,"abstract":"<p >This study reveals the electric-field-induced tuning and modulation of electronic bandgap of zinc blende ZnS as potential prospect for the next generation optoelectronics. By employing Generalized Gradient Approximation (GGA) with a Plane-Wave basis set based on the Quantum espresso package, the correlation between electronic bandgap engineering, tuning/switchable modulations with the varying applied electric field strength is established. We unveiled dynamical switching in range from 2.37 eV to 0 eV (at critical field) under the positive field strength of 0.01 V Å<small><sup>−1</sup></small> to 0.5 V Å<small><sup>−1</sup></small>, and from 2.41 eV to 1.52 eV under the negative fields strength from −0.01 V Å<small><sup>−1</sup></small> to −0.5 V Å<small><sup>−1</sup></small> along the out-of-plane <em>z</em>-axis. The valence and conduction bands overlap at a critical field (0.5 V Å<small><sup>−1</sup></small>) is attributed due to the Mott transition, where electron–electron interactions persuade a transition in behavior from semiconductor to conductor. The partial (PDOS) and total density of states (TDOS) display electric-field-tailored dynamically switching of the sp<small><sup>3</sup></small> hybridization into the Zn-3d, Zn-2s and S-2p states. The modulation of local density of states (LDOS), charge density and variation in charge transfer (between Zn and S) further confirm electric-field-induced redistribution of charges between Zn and S atoms. Optical parameters, comprising refractive index (<em>n</em>(<em>ω</em>)), absorption coefficient (<em>α</em>(<em>ω</em>)), reflectivity (<em>R</em>(<em>ω</em>)), extinction co-efficient (<em>k</em>(<em>ω</em>)), real (<em>ε</em><small><sub>1</sub></small>(<em>ω</em>)) and imaginary (<em>ε</em><small><sub>2</sub></small><em>ω</em>)) dielectric function and electron energy loss (ELS)) display field-dependent behavior, signifying the potential of ZnS as a tunable optoelectronic material. These findings validate the feasibility of electric-field-controlled engineering of ZnS properties, paving the way for exciting advancements in the controlled functionalities in semiconductors to design innovative next-generation optoelectronic and photonic devices.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 31","pages":" 25349-25361"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02719e?page=search","citationCount":"0","resultStr":"{\"title\":\"Atomic scale DFT based investigation of tuning and quantum modulation of zinc blende ZnS bandgap for next-generation materials\",\"authors\":\"Suneela Arif\",\"doi\":\"10.1039/D5RA02719E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study reveals the electric-field-induced tuning and modulation of electronic bandgap of zinc blende ZnS as potential prospect for the next generation optoelectronics. By employing Generalized Gradient Approximation (GGA) with a Plane-Wave basis set based on the Quantum espresso package, the correlation between electronic bandgap engineering, tuning/switchable modulations with the varying applied electric field strength is established. We unveiled dynamical switching in range from 2.37 eV to 0 eV (at critical field) under the positive field strength of 0.01 V Å<small><sup>−1</sup></small> to 0.5 V Å<small><sup>−1</sup></small>, and from 2.41 eV to 1.52 eV under the negative fields strength from −0.01 V Å<small><sup>−1</sup></small> to −0.5 V Å<small><sup>−1</sup></small> along the out-of-plane <em>z</em>-axis. The valence and conduction bands overlap at a critical field (0.5 V Å<small><sup>−1</sup></small>) is attributed due to the Mott transition, where electron–electron interactions persuade a transition in behavior from semiconductor to conductor. The partial (PDOS) and total density of states (TDOS) display electric-field-tailored dynamically switching of the sp<small><sup>3</sup></small> hybridization into the Zn-3d, Zn-2s and S-2p states. The modulation of local density of states (LDOS), charge density and variation in charge transfer (between Zn and S) further confirm electric-field-induced redistribution of charges between Zn and S atoms. Optical parameters, comprising refractive index (<em>n</em>(<em>ω</em>)), absorption coefficient (<em>α</em>(<em>ω</em>)), reflectivity (<em>R</em>(<em>ω</em>)), extinction co-efficient (<em>k</em>(<em>ω</em>)), real (<em>ε</em><small><sub>1</sub></small>(<em>ω</em>)) and imaginary (<em>ε</em><small><sub>2</sub></small><em>ω</em>)) dielectric function and electron energy loss (ELS)) display field-dependent behavior, signifying the potential of ZnS as a tunable optoelectronic material. These findings validate the feasibility of electric-field-controlled engineering of ZnS properties, paving the way for exciting advancements in the controlled functionalities in semiconductors to design innovative next-generation optoelectronic and photonic devices.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 31\",\"pages\":\" 25349-25361\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02719e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02719e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02719e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该研究揭示了电感应调谐和调制闪锌矿ZnS的电子带隙是下一代光电子学的潜在前景。利用基于量子浓缩包的平面波基集的广义梯度近似(GGA),建立了电子带隙工程、调谐/可切换调制与外加电场强度变化之间的相关性。在正场强为0.01 V Å−1至0.5 V Å−1的条件下,在2.37 eV至0 eV(临界场)的范围内,在负场强为- 0.01 V Å−1至- 0.5 V Å−1的条件下,沿平面外z轴在2.41 eV至1.52 eV之间进行了动态切换。价带和导带在临界场(0.5 V Å−1)重叠归因于Mott跃迁,其中电子-电子相互作用使行为从半导体转变为导体。部分态密度(PDOS)和总态密度(TDOS)显示了sp3杂化态在电场作用下动态切换到Zn-3d、Zn-2s和S-2p态。局域态密度(LDOS)、电荷密度和(Zn和S之间)电荷转移变化的调制进一步证实了电场诱导Zn和S原子之间电荷的再分配。折射率(n(ω))、吸收系数(α(ω))、反射率(R(ω))、消光系数(k(ω))、实介电函数(ε1(ω))和虚介电函数(ε2ω)和电子能量损失(ELS))等光学参数显示出场依赖性,表明ZnS具有作为可调谐光电材料的潜力。这些发现验证了ZnS特性的电场控制工程的可行性,为半导体控制功能的令人兴奋的进步铺平了道路,以设计创新的下一代光电和光子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomic scale DFT based investigation of tuning and quantum modulation of zinc blende ZnS bandgap for next-generation materials

Atomic scale DFT based investigation of tuning and quantum modulation of zinc blende ZnS bandgap for next-generation materials

This study reveals the electric-field-induced tuning and modulation of electronic bandgap of zinc blende ZnS as potential prospect for the next generation optoelectronics. By employing Generalized Gradient Approximation (GGA) with a Plane-Wave basis set based on the Quantum espresso package, the correlation between electronic bandgap engineering, tuning/switchable modulations with the varying applied electric field strength is established. We unveiled dynamical switching in range from 2.37 eV to 0 eV (at critical field) under the positive field strength of 0.01 V Å−1 to 0.5 V Å−1, and from 2.41 eV to 1.52 eV under the negative fields strength from −0.01 V Å−1 to −0.5 V Å−1 along the out-of-plane z-axis. The valence and conduction bands overlap at a critical field (0.5 V Å−1) is attributed due to the Mott transition, where electron–electron interactions persuade a transition in behavior from semiconductor to conductor. The partial (PDOS) and total density of states (TDOS) display electric-field-tailored dynamically switching of the sp3 hybridization into the Zn-3d, Zn-2s and S-2p states. The modulation of local density of states (LDOS), charge density and variation in charge transfer (between Zn and S) further confirm electric-field-induced redistribution of charges between Zn and S atoms. Optical parameters, comprising refractive index (n(ω)), absorption coefficient (α(ω)), reflectivity (R(ω)), extinction co-efficient (k(ω)), real (ε1(ω)) and imaginary (ε2ω)) dielectric function and electron energy loss (ELS)) display field-dependent behavior, signifying the potential of ZnS as a tunable optoelectronic material. These findings validate the feasibility of electric-field-controlled engineering of ZnS properties, paving the way for exciting advancements in the controlled functionalities in semiconductors to design innovative next-generation optoelectronic and photonic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信