Mihir Sheth, Caed Knight, Qiang Wu, Alexandra Vasilyeva, Awaneesh Upadhyay, Luca Bau, Jia-Ling Ruan, Nicholas Ovenden, Eleanor Stride
{"title":"大小问题:超声成像和治疗中的微泡与纳米泡","authors":"Mihir Sheth, Caed Knight, Qiang Wu, Alexandra Vasilyeva, Awaneesh Upadhyay, Luca Bau, Jia-Ling Ruan, Nicholas Ovenden, Eleanor Stride","doi":"10.1126/sciadv.ads2177","DOIUrl":null,"url":null,"abstract":"<div >This study investigates the reported ability of nanobubbles (<500 nanometers in diameter) to exhibit a comparable or superior acoustic response to microbubbles (>1 micrometer in diameter). Eight hypotheses were examined. Both the theoretical and experimental results supported only one hypothesis: The apparent echogenicity of nanobubbles under both linear and nonlinear imaging is due to the presence of preexisting microbubbles, which are not reliably detected by available nanoparticle sizing methods. There was no evidence to support the other hypotheses, although the possibility of microbubble formation due to bubble aggregation/coalescence or swelling due to gas absorption in vivo could not be completely ruled out. Nanobubbles may offer advantages in terms of circulatory stability and potential for therapeutic delivery compared with microbubbles, but these advantages must be weighed against the need to use higher bubble concentrations, higher ultrasound frequencies, and/or higher intensities to achieve equivalent imaging and/or therapeutic effects.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads2177","citationCount":"0","resultStr":"{\"title\":\"Size matters: Micro- versus nanobubbles in ultrasound imaging and therapy\",\"authors\":\"Mihir Sheth, Caed Knight, Qiang Wu, Alexandra Vasilyeva, Awaneesh Upadhyay, Luca Bau, Jia-Ling Ruan, Nicholas Ovenden, Eleanor Stride\",\"doi\":\"10.1126/sciadv.ads2177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >This study investigates the reported ability of nanobubbles (<500 nanometers in diameter) to exhibit a comparable or superior acoustic response to microbubbles (>1 micrometer in diameter). Eight hypotheses were examined. Both the theoretical and experimental results supported only one hypothesis: The apparent echogenicity of nanobubbles under both linear and nonlinear imaging is due to the presence of preexisting microbubbles, which are not reliably detected by available nanoparticle sizing methods. There was no evidence to support the other hypotheses, although the possibility of microbubble formation due to bubble aggregation/coalescence or swelling due to gas absorption in vivo could not be completely ruled out. Nanobubbles may offer advantages in terms of circulatory stability and potential for therapeutic delivery compared with microbubbles, but these advantages must be weighed against the need to use higher bubble concentrations, higher ultrasound frequencies, and/or higher intensities to achieve equivalent imaging and/or therapeutic effects.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 29\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads2177\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads2177\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads2177","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Size matters: Micro- versus nanobubbles in ultrasound imaging and therapy
This study investigates the reported ability of nanobubbles (<500 nanometers in diameter) to exhibit a comparable or superior acoustic response to microbubbles (>1 micrometer in diameter). Eight hypotheses were examined. Both the theoretical and experimental results supported only one hypothesis: The apparent echogenicity of nanobubbles under both linear and nonlinear imaging is due to the presence of preexisting microbubbles, which are not reliably detected by available nanoparticle sizing methods. There was no evidence to support the other hypotheses, although the possibility of microbubble formation due to bubble aggregation/coalescence or swelling due to gas absorption in vivo could not be completely ruled out. Nanobubbles may offer advantages in terms of circulatory stability and potential for therapeutic delivery compared with microbubbles, but these advantages must be weighed against the need to use higher bubble concentrations, higher ultrasound frequencies, and/or higher intensities to achieve equivalent imaging and/or therapeutic effects.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.