利用人工智能从心电图中检测结构性心脏病

IF 48.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-07-16 DOI:10.1038/s41586-025-09227-0
Timothy J. Poterucha, Linyuan Jing, Ramon Pimentel Ricart, Michael Adjei-Mosi, Joshua Finer, Dustin Hartzel, Christopher Kelsey, Aaron Long, Daniel Rocha, Jeffrey A. Ruhl, David vanMaanen, Marc A. Probst, Brock Daniels, Shalmali D. Joshi, Olivier Tastet, Denis Corbin, Robert Avram, Joshua P. Barrios, Geoffrey H. Tison, I-Min Chiu, David Ouyang, Alexander Volodarskiy, Michelle Castillo, Francisco A. Roedan Oliver, Paloma P. Malta, Siqin Ye, Gregg F. Rosner, Jose M. Dizon, Shah R. Ali, Qi Liu, Corey K. Bradley, Prashant Vaishnava, Carol A. Waksmonski, Ersilia M. DeFilippis, Vratika Agarwal, Mark Lebehn, Polydoros N. Kampaktsis, Sofia Shames, Ashley N. Beecy, Deepa Kumaraiah, Shunichi Homma, Allan Schwartz, Rebecca T. Hahn, Martin Leon, Andrew J. Einstein, Mathew S. Maurer, Heidi S. Hartman, John Weston Hughes, Christopher M. Haggerty, Pierre Elias
{"title":"利用人工智能从心电图中检测结构性心脏病","authors":"Timothy J. Poterucha, Linyuan Jing, Ramon Pimentel Ricart, Michael Adjei-Mosi, Joshua Finer, Dustin Hartzel, Christopher Kelsey, Aaron Long, Daniel Rocha, Jeffrey A. Ruhl, David vanMaanen, Marc A. Probst, Brock Daniels, Shalmali D. Joshi, Olivier Tastet, Denis Corbin, Robert Avram, Joshua P. Barrios, Geoffrey H. Tison, I-Min Chiu, David Ouyang, Alexander Volodarskiy, Michelle Castillo, Francisco A. Roedan Oliver, Paloma P. Malta, Siqin Ye, Gregg F. Rosner, Jose M. Dizon, Shah R. Ali, Qi Liu, Corey K. Bradley, Prashant Vaishnava, Carol A. Waksmonski, Ersilia M. DeFilippis, Vratika Agarwal, Mark Lebehn, Polydoros N. Kampaktsis, Sofia Shames, Ashley N. Beecy, Deepa Kumaraiah, Shunichi Homma, Allan Schwartz, Rebecca T. Hahn, Martin Leon, Andrew J. Einstein, Mathew S. Maurer, Heidi S. Hartman, John Weston Hughes, Christopher M. Haggerty, Pierre Elias","doi":"10.1038/s41586-025-09227-0","DOIUrl":null,"url":null,"abstract":"<p>Early detection of structural heart disease is critical to improving outcomes, but widespread screening remains limited by the cost and accessibility of imaging tools such as echocardiography<sup>1,2</sup>. Recent advances in machine learning applied to heart rhythm recordings have shown promise in identifying disease<sup>3,4</sup>, although previous work has been limited by development in narrow populations or targeting only select heart conditions<sup>5</sup>. Here we introduce a deep learning model, EchoNext, trained on more than 1 million heart rhythm and imaging records across a large and diverse health system to detect many forms of structural heart disease. The model demonstrated high diagnostic accuracy in internal and external validation, outperforming cardiologists in a controlled evaluation and showing consistent performance across different care settings and racial and/or ethnic groups. The models were prospectively evaluated in a clinical trial of patients without previous cardiac imaging, successfully identifying previously undiagnosed heart disease. These findings support the potential of artificial intelligence to expand access to heart disease screening at scale. To enable further development and transparency, we have publicly released model weights and a large, annotated dataset linking heart rhythm data to imaging-based diagnoses.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"29 1","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting structural heart disease from electrocardiograms using AI\",\"authors\":\"Timothy J. Poterucha, Linyuan Jing, Ramon Pimentel Ricart, Michael Adjei-Mosi, Joshua Finer, Dustin Hartzel, Christopher Kelsey, Aaron Long, Daniel Rocha, Jeffrey A. Ruhl, David vanMaanen, Marc A. Probst, Brock Daniels, Shalmali D. Joshi, Olivier Tastet, Denis Corbin, Robert Avram, Joshua P. Barrios, Geoffrey H. Tison, I-Min Chiu, David Ouyang, Alexander Volodarskiy, Michelle Castillo, Francisco A. Roedan Oliver, Paloma P. Malta, Siqin Ye, Gregg F. Rosner, Jose M. Dizon, Shah R. Ali, Qi Liu, Corey K. Bradley, Prashant Vaishnava, Carol A. Waksmonski, Ersilia M. DeFilippis, Vratika Agarwal, Mark Lebehn, Polydoros N. Kampaktsis, Sofia Shames, Ashley N. Beecy, Deepa Kumaraiah, Shunichi Homma, Allan Schwartz, Rebecca T. Hahn, Martin Leon, Andrew J. Einstein, Mathew S. Maurer, Heidi S. Hartman, John Weston Hughes, Christopher M. Haggerty, Pierre Elias\",\"doi\":\"10.1038/s41586-025-09227-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Early detection of structural heart disease is critical to improving outcomes, but widespread screening remains limited by the cost and accessibility of imaging tools such as echocardiography<sup>1,2</sup>. Recent advances in machine learning applied to heart rhythm recordings have shown promise in identifying disease<sup>3,4</sup>, although previous work has been limited by development in narrow populations or targeting only select heart conditions<sup>5</sup>. Here we introduce a deep learning model, EchoNext, trained on more than 1 million heart rhythm and imaging records across a large and diverse health system to detect many forms of structural heart disease. The model demonstrated high diagnostic accuracy in internal and external validation, outperforming cardiologists in a controlled evaluation and showing consistent performance across different care settings and racial and/or ethnic groups. The models were prospectively evaluated in a clinical trial of patients without previous cardiac imaging, successfully identifying previously undiagnosed heart disease. These findings support the potential of artificial intelligence to expand access to heart disease screening at scale. To enable further development and transparency, we have publicly released model weights and a large, annotated dataset linking heart rhythm data to imaging-based diagnoses.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-025-09227-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09227-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

结构性心脏病的早期发现对改善预后至关重要,但广泛的筛查仍然受到成本和超声心动图等成像工具可及性的限制1,2。应用于心律记录的机器学习的最新进展在识别疾病方面显示出了希望,尽管之前的工作受到限于在狭窄的人群中发展或仅针对特定的心脏疾病。在这里,我们介绍了一个深度学习模型,EchoNext,在一个大型和多样化的卫生系统中对超过100万的心律和成像记录进行了训练,以检测多种形式的结构性心脏病。该模型在内部和外部验证中显示出较高的诊断准确性,在控制评估中优于心脏病专家,并在不同的护理环境和种族和/或民族群体中显示出一致的表现。这些模型在没有心脏成像的患者的临床试验中进行了前瞻性评估,成功地识别了以前未诊断的心脏病。这些发现支持了人工智能在扩大心脏病筛查范围方面的潜力。为了进一步发展和提高透明度,我们公开发布了模型权重和一个大型的、带注释的数据集,将心律数据与基于成像的诊断联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detecting structural heart disease from electrocardiograms using AI

Detecting structural heart disease from electrocardiograms using AI

Early detection of structural heart disease is critical to improving outcomes, but widespread screening remains limited by the cost and accessibility of imaging tools such as echocardiography1,2. Recent advances in machine learning applied to heart rhythm recordings have shown promise in identifying disease3,4, although previous work has been limited by development in narrow populations or targeting only select heart conditions5. Here we introduce a deep learning model, EchoNext, trained on more than 1 million heart rhythm and imaging records across a large and diverse health system to detect many forms of structural heart disease. The model demonstrated high diagnostic accuracy in internal and external validation, outperforming cardiologists in a controlled evaluation and showing consistent performance across different care settings and racial and/or ethnic groups. The models were prospectively evaluated in a clinical trial of patients without previous cardiac imaging, successfully identifying previously undiagnosed heart disease. These findings support the potential of artificial intelligence to expand access to heart disease screening at scale. To enable further development and transparency, we have publicly released model weights and a large, annotated dataset linking heart rhythm data to imaging-based diagnoses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信