Kai Li, Christian Ott, Marcus Agåker, Phay J. Ho, Gilles Doumy, Alexander Magunia, Marc Rebholz, Marc Simon, Tommaso Mazza, Alberto De Fanis, Thomas M. Baumann, Jacobo Montano, Nils Rennhack, Sergey Usenko, Yevheniy Ovcharenko, Kalyani Chordiya, Lan Cheng, Jan-Erik Rubensson, Michael Meyer, Thomas Pfeifer, Mette B. Gaarde, Linda Young
{"title":"超分辨率受激x射线拉曼光谱","authors":"Kai Li, Christian Ott, Marcus Agåker, Phay J. Ho, Gilles Doumy, Alexander Magunia, Marc Rebholz, Marc Simon, Tommaso Mazza, Alberto De Fanis, Thomas M. Baumann, Jacobo Montano, Nils Rennhack, Sergey Usenko, Yevheniy Ovcharenko, Kalyani Chordiya, Lan Cheng, Jan-Erik Rubensson, Michael Meyer, Thomas Pfeifer, Mette B. Gaarde, Linda Young","doi":"10.1038/s41586-025-09214-5","DOIUrl":null,"url":null,"abstract":"Propagation of intense X-ray pulses through dense media has led to the observation of phenomena such as atomic X-ray lasing1,2, self-induced transparency3 and stimulated X-ray Raman scattering (SXRS)4. SXRS has been long predicted as a means to launch and probe valence-electron wavepackets and as a building block for nonlinear X-ray spectroscopies5,6. However, experimental observations of SXRS to date4,7,8 have not provided spectroscopic information, and theoretical modelling has largely implemented hard-to-realize phase-coherent attosecond pulses. Here we demonstrate SXRS with spectroscopic precision, that is, detection of valence-excited states in neon with a near Fourier-limited joint energy–time resolution of 0.1 eV–40 fs. We used a new covariance analysis between statistically spiky broadband incident X-ray and scattered X-ray Raman pulses. Using 18,000 single shots, we beat not only the incident (about 8 eV) bandwidth but also the approximately 0.2 eV instrumental energy resolution, thus creating super-resolution conditions, in analogy to super-resolved fluorescence microscopy9. Our experimental results, supported by ab initio propagation simulations, reveal the competition between lasing in the ion and stimulated Raman scattering in the neutral. We demonstrate enhanced signal collection efficiency and a broad excitation window, surpassing spontaneous Raman efficiencies by orders of magnitude. This stochastic SXRS approach represents a first step towards tracking elementary events that determine chemical outcomes10. A high-resolution spectroscopic tool is demonstrated using the stochastically fluctuating intensity spikes in time and energy domains of a self-amplified spontaneous emission X-ray free-electron laser.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"643 8072","pages":"662-668"},"PeriodicalIF":50.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-025-09214-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Super-resolution stimulated X-ray Raman spectroscopy\",\"authors\":\"Kai Li, Christian Ott, Marcus Agåker, Phay J. Ho, Gilles Doumy, Alexander Magunia, Marc Rebholz, Marc Simon, Tommaso Mazza, Alberto De Fanis, Thomas M. Baumann, Jacobo Montano, Nils Rennhack, Sergey Usenko, Yevheniy Ovcharenko, Kalyani Chordiya, Lan Cheng, Jan-Erik Rubensson, Michael Meyer, Thomas Pfeifer, Mette B. Gaarde, Linda Young\",\"doi\":\"10.1038/s41586-025-09214-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Propagation of intense X-ray pulses through dense media has led to the observation of phenomena such as atomic X-ray lasing1,2, self-induced transparency3 and stimulated X-ray Raman scattering (SXRS)4. SXRS has been long predicted as a means to launch and probe valence-electron wavepackets and as a building block for nonlinear X-ray spectroscopies5,6. However, experimental observations of SXRS to date4,7,8 have not provided spectroscopic information, and theoretical modelling has largely implemented hard-to-realize phase-coherent attosecond pulses. Here we demonstrate SXRS with spectroscopic precision, that is, detection of valence-excited states in neon with a near Fourier-limited joint energy–time resolution of 0.1 eV–40 fs. We used a new covariance analysis between statistically spiky broadband incident X-ray and scattered X-ray Raman pulses. Using 18,000 single shots, we beat not only the incident (about 8 eV) bandwidth but also the approximately 0.2 eV instrumental energy resolution, thus creating super-resolution conditions, in analogy to super-resolved fluorescence microscopy9. Our experimental results, supported by ab initio propagation simulations, reveal the competition between lasing in the ion and stimulated Raman scattering in the neutral. We demonstrate enhanced signal collection efficiency and a broad excitation window, surpassing spontaneous Raman efficiencies by orders of magnitude. This stochastic SXRS approach represents a first step towards tracking elementary events that determine chemical outcomes10. A high-resolution spectroscopic tool is demonstrated using the stochastically fluctuating intensity spikes in time and energy domains of a self-amplified spontaneous emission X-ray free-electron laser.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"643 8072\",\"pages\":\"662-668\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41586-025-09214-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-025-09214-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09214-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Propagation of intense X-ray pulses through dense media has led to the observation of phenomena such as atomic X-ray lasing1,2, self-induced transparency3 and stimulated X-ray Raman scattering (SXRS)4. SXRS has been long predicted as a means to launch and probe valence-electron wavepackets and as a building block for nonlinear X-ray spectroscopies5,6. However, experimental observations of SXRS to date4,7,8 have not provided spectroscopic information, and theoretical modelling has largely implemented hard-to-realize phase-coherent attosecond pulses. Here we demonstrate SXRS with spectroscopic precision, that is, detection of valence-excited states in neon with a near Fourier-limited joint energy–time resolution of 0.1 eV–40 fs. We used a new covariance analysis between statistically spiky broadband incident X-ray and scattered X-ray Raman pulses. Using 18,000 single shots, we beat not only the incident (about 8 eV) bandwidth but also the approximately 0.2 eV instrumental energy resolution, thus creating super-resolution conditions, in analogy to super-resolved fluorescence microscopy9. Our experimental results, supported by ab initio propagation simulations, reveal the competition between lasing in the ion and stimulated Raman scattering in the neutral. We demonstrate enhanced signal collection efficiency and a broad excitation window, surpassing spontaneous Raman efficiencies by orders of magnitude. This stochastic SXRS approach represents a first step towards tracking elementary events that determine chemical outcomes10. A high-resolution spectroscopic tool is demonstrated using the stochastically fluctuating intensity spikes in time and energy domains of a self-amplified spontaneous emission X-ray free-electron laser.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.