{"title":"一个可移动的转录因子协调对氮缺乏的全身反应","authors":"Patricia Caballero-Carretero, Joaquin Medina","doi":"10.1038/s41477-025-02059-w","DOIUrl":null,"url":null,"abstract":"Long-distance signalling helps plants to coordinate responses to environmental stress, but identification of these signals can be technically challenging. A recent study presented a new method for mobile transcription factor identification based on trans-organ gene co-expression, enabling characterization of the shoot-derived transcription factor TGA7 and providing insights into how plants coordinate regulatory processes across different tissues.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"7 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mobile transcription factor coordinates systemic responses to nitrogen deficiency\",\"authors\":\"Patricia Caballero-Carretero, Joaquin Medina\",\"doi\":\"10.1038/s41477-025-02059-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-distance signalling helps plants to coordinate responses to environmental stress, but identification of these signals can be technically challenging. A recent study presented a new method for mobile transcription factor identification based on trans-organ gene co-expression, enabling characterization of the shoot-derived transcription factor TGA7 and providing insights into how plants coordinate regulatory processes across different tissues.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41477-025-02059-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-02059-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A mobile transcription factor coordinates systemic responses to nitrogen deficiency
Long-distance signalling helps plants to coordinate responses to environmental stress, but identification of these signals can be technically challenging. A recent study presented a new method for mobile transcription factor identification based on trans-organ gene co-expression, enabling characterization of the shoot-derived transcription factor TGA7 and providing insights into how plants coordinate regulatory processes across different tissues.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.