分层设计bi0.5 na0.5 tio3基多层电容器的先进稳定性和储能容量

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Weichen Zhao, Zhaobo Liu, Diming Xu, Ge Wang, Da Li, Jinnan Liu, Zhentao Wang, Yan Guo, Jiajia Ren, Tao Zhou, Lixia Pang, Hongwei Yang, Wenfeng Liu, Houbin Huang, Di Zhou
{"title":"分层设计bi0.5 na0.5 tio3基多层电容器的先进稳定性和储能容量","authors":"Weichen Zhao, Zhaobo Liu, Diming Xu, Ge Wang, Da Li, Jinnan Liu, Zhentao Wang, Yan Guo, Jiajia Ren, Tao Zhou, Lixia Pang, Hongwei Yang, Wenfeng Liu, Houbin Huang, Di Zhou","doi":"10.1038/s41467-025-61936-2","DOIUrl":null,"url":null,"abstract":"<p>Multilayer ceramic capacitors are cornerstone components of modern electronic systems. Yet ensuring reliability under demanding operational conditions, such as elevated temperatures and prolonged cycling, while achieving holistic optimization of recoverable energy density and efficiency remains a significant challenge. Herein, we implement a polar glass state strategy that catalyzes a profound enhancement in energy storage performance by modulating dynamic and thermodynamic processes. This approach minimizes hysteresis loss and improves breakdown strength through hierarchical structural engineering, disrupting nano-domains and refining grains. An ultra-high recoverable energy density of 22.92 J cm<sup>−3</sup> and exceptional efficiency of 97.1%, accompanied with state-of-the-art high-temperature stability are achieved in Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-based multilayer ceramic capacitors. This strategy promises to be a transformative blueprint for developing cutting-edge dielectric capacitors for high-temperature applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced stability and energy storage capacity in hierarchically engineered Bi0.5Na0.5TiO3-based multilayer capacitors\",\"authors\":\"Weichen Zhao, Zhaobo Liu, Diming Xu, Ge Wang, Da Li, Jinnan Liu, Zhentao Wang, Yan Guo, Jiajia Ren, Tao Zhou, Lixia Pang, Hongwei Yang, Wenfeng Liu, Houbin Huang, Di Zhou\",\"doi\":\"10.1038/s41467-025-61936-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multilayer ceramic capacitors are cornerstone components of modern electronic systems. Yet ensuring reliability under demanding operational conditions, such as elevated temperatures and prolonged cycling, while achieving holistic optimization of recoverable energy density and efficiency remains a significant challenge. Herein, we implement a polar glass state strategy that catalyzes a profound enhancement in energy storage performance by modulating dynamic and thermodynamic processes. This approach minimizes hysteresis loss and improves breakdown strength through hierarchical structural engineering, disrupting nano-domains and refining grains. An ultra-high recoverable energy density of 22.92 J cm<sup>−3</sup> and exceptional efficiency of 97.1%, accompanied with state-of-the-art high-temperature stability are achieved in Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-based multilayer ceramic capacitors. This strategy promises to be a transformative blueprint for developing cutting-edge dielectric capacitors for high-temperature applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61936-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61936-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多层陶瓷电容器是现代电子系统的基础元件。然而,在高温和长时间循环等苛刻的操作条件下确保可靠性,同时实现可回收能量密度和效率的整体优化,仍然是一个重大挑战。在这里,我们实现了一种极性玻璃态策略,通过调节动态和热力学过程来催化能量存储性能的深刻增强。这种方法通过分层结构工程、破坏纳米畴和细化晶粒,最大限度地减少了迟滞损失,提高了击穿强度。在bi0.5 na0.5 tio3基多层陶瓷电容器中获得了22.92 jcm−3的超高可回收能量密度和97.1%的卓越效率,并具有最先进的高温稳定性。这一策略有望成为开发用于高温应用的尖端介电电容器的变革蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advanced stability and energy storage capacity in hierarchically engineered Bi0.5Na0.5TiO3-based multilayer capacitors

Advanced stability and energy storage capacity in hierarchically engineered Bi0.5Na0.5TiO3-based multilayer capacitors

Multilayer ceramic capacitors are cornerstone components of modern electronic systems. Yet ensuring reliability under demanding operational conditions, such as elevated temperatures and prolonged cycling, while achieving holistic optimization of recoverable energy density and efficiency remains a significant challenge. Herein, we implement a polar glass state strategy that catalyzes a profound enhancement in energy storage performance by modulating dynamic and thermodynamic processes. This approach minimizes hysteresis loss and improves breakdown strength through hierarchical structural engineering, disrupting nano-domains and refining grains. An ultra-high recoverable energy density of 22.92 J cm−3 and exceptional efficiency of 97.1%, accompanied with state-of-the-art high-temperature stability are achieved in Bi0.5Na0.5TiO3-based multilayer ceramic capacitors. This strategy promises to be a transformative blueprint for developing cutting-edge dielectric capacitors for high-temperature applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信