探索400 Gbps/λ及以上的人工智能加速硅光子慢光技术

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Changhao Han, Qipeng Yang, Jun Qin, Yan Zhou, Zhao Zheng, Yunhao Zhang, Haoren Wang, Yu Sun, Junde Lu, Yimeng Wang, Zhangfeng Ge, Yichen Wu, Lei Wang, Zhixue He, Shaohua Yu, Weiwei Hu, Chao Peng, Haowen Shu, John E. Bowers, Xingjun Wang
{"title":"探索400 Gbps/λ及以上的人工智能加速硅光子慢光技术","authors":"Changhao Han, Qipeng Yang, Jun Qin, Yan Zhou, Zhao Zheng, Yunhao Zhang, Haoren Wang, Yu Sun, Junde Lu, Yimeng Wang, Zhangfeng Ge, Yichen Wu, Lei Wang, Zhixue He, Shaohua Yu, Weiwei Hu, Chao Peng, Haowen Shu, John E. Bowers, Xingjun Wang","doi":"10.1038/s41467-025-61933-5","DOIUrl":null,"url":null,"abstract":"<p>Silicon photonics is a promising platform for the extensive deployment of optical interconnections, with the feasibility of low-cost and large-scale production at the wafer level. However, the intrinsic efficiency-bandwidth trade-off and nonlinear distortions of pure silicon modulators result in the transmission limits, which raises concerns about the prospects of silicon photonics for ultrahigh-speed scenarios. Here, we propose an artificial intelligence (AI)-accelerated silicon photonic slow-light technology to explore 400 Gbps/<i>λ</i> and beyond transmission. By utilizing the artificial neural network, we achieve a data capacity of 3.2 Tbps based on an 8-channel wavelength-division-multiplexed silicon slow-light modulator chip with a thermal-insensitive structure, leading to an on-chip data-rate density of 1.6 Tb/s/mm<sup>2</sup>. The demonstration of single-lane 400 Gbps PAM-4 transmission reveals the great potential of standard silicon photonic platforms for next-generation optical interfaces. Our approach increases the transmission rate of silicon photonics significantly and is expected to construct a self-optimizing positive feedback loop with computing centers through AI technology.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"108 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring 400 Gbps/λ and beyond with AI-accelerated silicon photonic slow-light technology\",\"authors\":\"Changhao Han, Qipeng Yang, Jun Qin, Yan Zhou, Zhao Zheng, Yunhao Zhang, Haoren Wang, Yu Sun, Junde Lu, Yimeng Wang, Zhangfeng Ge, Yichen Wu, Lei Wang, Zhixue He, Shaohua Yu, Weiwei Hu, Chao Peng, Haowen Shu, John E. Bowers, Xingjun Wang\",\"doi\":\"10.1038/s41467-025-61933-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon photonics is a promising platform for the extensive deployment of optical interconnections, with the feasibility of low-cost and large-scale production at the wafer level. However, the intrinsic efficiency-bandwidth trade-off and nonlinear distortions of pure silicon modulators result in the transmission limits, which raises concerns about the prospects of silicon photonics for ultrahigh-speed scenarios. Here, we propose an artificial intelligence (AI)-accelerated silicon photonic slow-light technology to explore 400 Gbps/<i>λ</i> and beyond transmission. By utilizing the artificial neural network, we achieve a data capacity of 3.2 Tbps based on an 8-channel wavelength-division-multiplexed silicon slow-light modulator chip with a thermal-insensitive structure, leading to an on-chip data-rate density of 1.6 Tb/s/mm<sup>2</sup>. The demonstration of single-lane 400 Gbps PAM-4 transmission reveals the great potential of standard silicon photonic platforms for next-generation optical interfaces. Our approach increases the transmission rate of silicon photonics significantly and is expected to construct a self-optimizing positive feedback loop with computing centers through AI technology.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61933-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61933-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

硅光子学是广泛部署光互连的一个有前途的平台,具有在晶圆级低成本和大规模生产的可行性。然而,纯硅调制器固有的效率-带宽权衡和非线性失真导致了传输限制,这引起了人们对超高速场景下硅光子学前景的担忧。在这里,我们提出了一种人工智能(AI)加速的硅光子慢光技术,以探索400 Gbps/λ及以上的传输。通过利用人工神经网络,我们实现了基于8通道波分复用硅慢光调制器芯片的3.2 Tbps数据容量,该芯片具有热不敏感结构,从而使片上数据速率密度达到1.6 Tb/s/mm2。单通道400 Gbps PAM-4传输的演示显示了下一代光接口标准硅光子平台的巨大潜力。我们的方法显著提高了硅光子学的传输速率,并有望通过人工智能技术与计算中心构建自优化的正反馈回路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring 400 Gbps/λ and beyond with AI-accelerated silicon photonic slow-light technology

Exploring 400 Gbps/λ and beyond with AI-accelerated silicon photonic slow-light technology

Silicon photonics is a promising platform for the extensive deployment of optical interconnections, with the feasibility of low-cost and large-scale production at the wafer level. However, the intrinsic efficiency-bandwidth trade-off and nonlinear distortions of pure silicon modulators result in the transmission limits, which raises concerns about the prospects of silicon photonics for ultrahigh-speed scenarios. Here, we propose an artificial intelligence (AI)-accelerated silicon photonic slow-light technology to explore 400 Gbps/λ and beyond transmission. By utilizing the artificial neural network, we achieve a data capacity of 3.2 Tbps based on an 8-channel wavelength-division-multiplexed silicon slow-light modulator chip with a thermal-insensitive structure, leading to an on-chip data-rate density of 1.6 Tb/s/mm2. The demonstration of single-lane 400 Gbps PAM-4 transmission reveals the great potential of standard silicon photonic platforms for next-generation optical interfaces. Our approach increases the transmission rate of silicon photonics significantly and is expected to construct a self-optimizing positive feedback loop with computing centers through AI technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信