稳定n-i-p钙钛矿太阳能电池的多位点钝化非共价无掺杂构象空穴传输材料。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-16 DOI:10.1002/smll.202505961
Mengde Zhai, Naoyuki Shibayama, Telugu Bhim Raju, Tianhao Wu, Cheng Chen, Zhanglin Guo, Toshinori Matsushima, Tsutomu Miyasaka, Ming Cheng
{"title":"稳定n-i-p钙钛矿太阳能电池的多位点钝化非共价无掺杂构象空穴传输材料。","authors":"Mengde Zhai,&nbsp;Naoyuki Shibayama,&nbsp;Telugu Bhim Raju,&nbsp;Tianhao Wu,&nbsp;Cheng Chen,&nbsp;Zhanglin Guo,&nbsp;Toshinori Matsushima,&nbsp;Tsutomu Miyasaka,&nbsp;Ming Cheng","doi":"10.1002/smll.202505961","DOIUrl":null,"url":null,"abstract":"<p>High-performance, dopant-free hole transport materials (HTMs) play a crucial role in stabilized perovskite solar cells (PSCs). Skillfully using noncovalent bonding strategies to construct dopant-free HTM is both attractive and challenging. In this work, two dopant-free HTMs with multisite passivation are designed and synthesized. The core backbone is a heterocyclic lactam, and the intramolecular F···S noncovalent bonds are tuned by adjusting the position of F atoms. In TTPA-iF molecule, the noncovalent conformational lock minimizes the rotation of the core-terminal unit. This, in turn, reduces unfavorable reorganization energy and increases the molecular dipole moment. Compared to the amorphous films of TTPA-mF, the TTPA-iF films exhibit ordered molecular stacking and higher hole mobility. The rigid molecular conformation of TTPA-iF allows for more effective reduction of interfacial traps through multiple passivation sites and promotes carrier transport. As a result, PSCs with dopant-free TTPA-iF achieve a top efficiency of 24.28% and show significantly enhanced stability under various conditions in comparison to conventional doped HTMs. This research offers valuable insights and material options for the development of high-performance, dopant-free HTMs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 36","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncovalent Conformational Dopant-Free Hole Transport Materials with Multisite Passivation for Stable n-i-p Perovskite Solar Cells\",\"authors\":\"Mengde Zhai,&nbsp;Naoyuki Shibayama,&nbsp;Telugu Bhim Raju,&nbsp;Tianhao Wu,&nbsp;Cheng Chen,&nbsp;Zhanglin Guo,&nbsp;Toshinori Matsushima,&nbsp;Tsutomu Miyasaka,&nbsp;Ming Cheng\",\"doi\":\"10.1002/smll.202505961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-performance, dopant-free hole transport materials (HTMs) play a crucial role in stabilized perovskite solar cells (PSCs). Skillfully using noncovalent bonding strategies to construct dopant-free HTM is both attractive and challenging. In this work, two dopant-free HTMs with multisite passivation are designed and synthesized. The core backbone is a heterocyclic lactam, and the intramolecular F···S noncovalent bonds are tuned by adjusting the position of F atoms. In TTPA-iF molecule, the noncovalent conformational lock minimizes the rotation of the core-terminal unit. This, in turn, reduces unfavorable reorganization energy and increases the molecular dipole moment. Compared to the amorphous films of TTPA-mF, the TTPA-iF films exhibit ordered molecular stacking and higher hole mobility. The rigid molecular conformation of TTPA-iF allows for more effective reduction of interfacial traps through multiple passivation sites and promotes carrier transport. As a result, PSCs with dopant-free TTPA-iF achieve a top efficiency of 24.28% and show significantly enhanced stability under various conditions in comparison to conventional doped HTMs. This research offers valuable insights and material options for the development of high-performance, dopant-free HTMs.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 36\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202505961\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202505961","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高性能、无掺杂的空穴传输材料(HTMs)在稳定钙钛矿太阳能电池(PSCs)中发挥着至关重要的作用。巧妙地利用非共价键策略来构建无掺杂的HTM既具有吸引力又具有挑战性。本文设计并合成了两种无掺杂的多位点钝化HTMs。核心骨架是一个杂环内酰胺,通过调节F原子的位置来调节分子内的F···S非共价键。在TTPA-iF分子中,非共价构象锁使核端单元的旋转最小化。这反过来又减少了不利的重组能量并增加了分子偶极矩。与非晶TTPA-mF膜相比,TTPA-iF膜具有有序的分子堆积和更高的空穴迁移率。TTPA-iF的刚性分子构象允许通过多个钝化位点更有效地减少界面陷阱并促进载流子运输。结果表明,与常规掺杂HTMs相比,无掺杂TTPA-iF的PSCs最高效率为24.28%,在各种条件下均表现出显著增强的稳定性。这项研究为开发高性能、无掺杂的HTMs提供了有价值的见解和材料选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Noncovalent Conformational Dopant-Free Hole Transport Materials with Multisite Passivation for Stable n-i-p Perovskite Solar Cells

Noncovalent Conformational Dopant-Free Hole Transport Materials with Multisite Passivation for Stable n-i-p Perovskite Solar Cells

High-performance, dopant-free hole transport materials (HTMs) play a crucial role in stabilized perovskite solar cells (PSCs). Skillfully using noncovalent bonding strategies to construct dopant-free HTM is both attractive and challenging. In this work, two dopant-free HTMs with multisite passivation are designed and synthesized. The core backbone is a heterocyclic lactam, and the intramolecular F···S noncovalent bonds are tuned by adjusting the position of F atoms. In TTPA-iF molecule, the noncovalent conformational lock minimizes the rotation of the core-terminal unit. This, in turn, reduces unfavorable reorganization energy and increases the molecular dipole moment. Compared to the amorphous films of TTPA-mF, the TTPA-iF films exhibit ordered molecular stacking and higher hole mobility. The rigid molecular conformation of TTPA-iF allows for more effective reduction of interfacial traps through multiple passivation sites and promotes carrier transport. As a result, PSCs with dopant-free TTPA-iF achieve a top efficiency of 24.28% and show significantly enhanced stability under various conditions in comparison to conventional doped HTMs. This research offers valuable insights and material options for the development of high-performance, dopant-free HTMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信