钠离子电池用NASICON阴极中高价钒离子未配对电子激发机制的研究。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuqiu Wang, Hanghang Dong, Shikang Jiang, Binkai Yu, Ting Wang, Hui Xia, Jinqiao Hu, Limin Zhou, Yao Xiao, Jin Xiao*, Weibo Hua*, Yi Wang*, Shuangqiang Chen* and Mingzhe Chen*, 
{"title":"钠离子电池用NASICON阴极中高价钒离子未配对电子激发机制的研究。","authors":"Yuqiu Wang,&nbsp;Hanghang Dong,&nbsp;Shikang Jiang,&nbsp;Binkai Yu,&nbsp;Ting Wang,&nbsp;Hui Xia,&nbsp;Jinqiao Hu,&nbsp;Limin Zhou,&nbsp;Yao Xiao,&nbsp;Jin Xiao*,&nbsp;Weibo Hua*,&nbsp;Yi Wang*,&nbsp;Shuangqiang Chen* and Mingzhe Chen*,&nbsp;","doi":"10.1021/acsami.5c06519","DOIUrl":null,"url":null,"abstract":"<p >Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) due to their stable cycling performance, low cost, and abundance of sodium resources. Among cathodes of SIBs, sodium superionic conductors (NASCIONs) have garnered significant attention due to their unique 3D framework, high thermal stability, and high ionic conductivity. Activation of multiple electron transfer in NASICON materials is crucial for improving energy density, but the activation mechanism of the high-valent V-platform, especially V<sup>4+</sup>/V<sup>5+</sup> redox, is currently understudied. To this end, we have synthesized Na<sub>3</sub>Cr<sub><i>x</i></sub>V<sub>2–<i>x</i></sub>(PO<sub>4</sub>)<sub>3</sub> (<i>x</i> = 0, 0.25, 0.5, 0.75, 1) cathode materials with controlled Cr doping ratios. When meticulously tuning the Cr doping levels to <i>x</i> = 0.5, the specific capacity can be strikingly optimized with a high plateau at around 4 V (vs Na<sup>+</sup>/Na) and a higher capacity retention of 89.1% after 2500 cycles. The electron paramagnetic resonance (EPR) and theoretical calculations show that the spin angular momentum of unpaired electrons leads to spin polarization and their magnetic moment results in electron spin–nuclear spin coupling. Therefore, the overall magnetic moment of the material is increased after chromium doping. Meanwhile, the unpaired electrons filling the orbitals leads to the hybridized metal p, d, and f orbitals, which can reduce the V band gap and in turn lower the energy barrier for electron migration, promoting the V<sup>4+</sup>/V<sup>5+</sup> redox coupling in Na<sub>3</sub>Cr<sub><i>x</i></sub>V<sub>1–<i>x</i></sub>(PO<sub>4</sub>)<sub>3</sub>. This discovery refines the doping strategy for vanadium-based cathode materials and facilitates the understanding of multielectron reactions in SIBs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 30","pages":"42990–43001"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Excitation Mechanism of Unpaired Electrons of High-Valent Vanadium Ions in a NASICON Cathode for Sodium-Ion Batteries\",\"authors\":\"Yuqiu Wang,&nbsp;Hanghang Dong,&nbsp;Shikang Jiang,&nbsp;Binkai Yu,&nbsp;Ting Wang,&nbsp;Hui Xia,&nbsp;Jinqiao Hu,&nbsp;Limin Zhou,&nbsp;Yao Xiao,&nbsp;Jin Xiao*,&nbsp;Weibo Hua*,&nbsp;Yi Wang*,&nbsp;Shuangqiang Chen* and Mingzhe Chen*,&nbsp;\",\"doi\":\"10.1021/acsami.5c06519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) due to their stable cycling performance, low cost, and abundance of sodium resources. Among cathodes of SIBs, sodium superionic conductors (NASCIONs) have garnered significant attention due to their unique 3D framework, high thermal stability, and high ionic conductivity. Activation of multiple electron transfer in NASICON materials is crucial for improving energy density, but the activation mechanism of the high-valent V-platform, especially V<sup>4+</sup>/V<sup>5+</sup> redox, is currently understudied. To this end, we have synthesized Na<sub>3</sub>Cr<sub><i>x</i></sub>V<sub>2–<i>x</i></sub>(PO<sub>4</sub>)<sub>3</sub> (<i>x</i> = 0, 0.25, 0.5, 0.75, 1) cathode materials with controlled Cr doping ratios. When meticulously tuning the Cr doping levels to <i>x</i> = 0.5, the specific capacity can be strikingly optimized with a high plateau at around 4 V (vs Na<sup>+</sup>/Na) and a higher capacity retention of 89.1% after 2500 cycles. The electron paramagnetic resonance (EPR) and theoretical calculations show that the spin angular momentum of unpaired electrons leads to spin polarization and their magnetic moment results in electron spin–nuclear spin coupling. Therefore, the overall magnetic moment of the material is increased after chromium doping. Meanwhile, the unpaired electrons filling the orbitals leads to the hybridized metal p, d, and f orbitals, which can reduce the V band gap and in turn lower the energy barrier for electron migration, promoting the V<sup>4+</sup>/V<sup>5+</sup> redox coupling in Na<sub>3</sub>Cr<sub><i>x</i></sub>V<sub>1–<i>x</i></sub>(PO<sub>4</sub>)<sub>3</sub>. This discovery refines the doping strategy for vanadium-based cathode materials and facilitates the understanding of multielectron reactions in SIBs.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 30\",\"pages\":\"42990–43001\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c06519\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c06519","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钠离子电池(SIBs)由于其稳定的循环性能、低成本和丰富的钠资源而成为锂离子电池(lib)的有前途的替代品。在sib阴极中,钠超离子导体(NASCIONs)因其独特的三维结构、高热稳定性和高离子电导率而受到广泛关注。NASICON材料中多重电子转移的激活对于提高能量密度至关重要,但高价v平台的激活机制,特别是V4+/V5+氧化还原的激活机制目前还没有得到充分的研究。为此,我们合成了控制Cr掺杂比的Na3CrxV2-x(PO4)3 (x = 0,0.25, 0.5, 0.75, 1)正极材料。当精心调整Cr掺杂水平为x = 0.5时,比容量可以显著优化,在4 V (vs Na+/Na)附近有一个高平台,在2500次循环后容量保持率高达89.1%。电子顺磁共振(EPR)和理论计算表明,未配对电子的自旋角动量导致自旋极化,它们的磁矩导致电子自旋-核自旋耦合。因此,铬掺杂后材料的整体磁矩增大。同时,未配对电子填充轨道导致杂化金属p、d和f轨道,从而减小了V带隙,降低了电子迁移的能垒,促进了Na3CrxV1-x(PO4)3中的V4+/V5+氧化还原耦合。这一发现完善了钒基阴极材料的掺杂策略,促进了对sib中多电子反应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking the Excitation Mechanism of Unpaired Electrons of High-Valent Vanadium Ions in a NASICON Cathode for Sodium-Ion Batteries

Unlocking the Excitation Mechanism of Unpaired Electrons of High-Valent Vanadium Ions in a NASICON Cathode for Sodium-Ion Batteries

Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) due to their stable cycling performance, low cost, and abundance of sodium resources. Among cathodes of SIBs, sodium superionic conductors (NASCIONs) have garnered significant attention due to their unique 3D framework, high thermal stability, and high ionic conductivity. Activation of multiple electron transfer in NASICON materials is crucial for improving energy density, but the activation mechanism of the high-valent V-platform, especially V4+/V5+ redox, is currently understudied. To this end, we have synthesized Na3CrxV2–x(PO4)3 (x = 0, 0.25, 0.5, 0.75, 1) cathode materials with controlled Cr doping ratios. When meticulously tuning the Cr doping levels to x = 0.5, the specific capacity can be strikingly optimized with a high plateau at around 4 V (vs Na+/Na) and a higher capacity retention of 89.1% after 2500 cycles. The electron paramagnetic resonance (EPR) and theoretical calculations show that the spin angular momentum of unpaired electrons leads to spin polarization and their magnetic moment results in electron spin–nuclear spin coupling. Therefore, the overall magnetic moment of the material is increased after chromium doping. Meanwhile, the unpaired electrons filling the orbitals leads to the hybridized metal p, d, and f orbitals, which can reduce the V band gap and in turn lower the energy barrier for electron migration, promoting the V4+/V5+ redox coupling in Na3CrxV1–x(PO4)3. This discovery refines the doping strategy for vanadium-based cathode materials and facilitates the understanding of multielectron reactions in SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信