苦参中单萜吲哚类生物碱的酶外聚体化

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Allwin McDonald, Yoko Nakamura, Carsten Schotte, Gabriel Titchiner, Kin Lau, Ryan Alam, Adriana A. Lopes, C. Robin Buell, Sarah E. O’Connor
{"title":"苦参中单萜吲哚类生物碱的酶外聚体化","authors":"Allwin McDonald, Yoko Nakamura, Carsten Schotte, Gabriel Titchiner, Kin Lau, Ryan Alam, Adriana A. Lopes, C. Robin Buell, Sarah E. O’Connor","doi":"10.1038/s41589-025-01970-9","DOIUrl":null,"url":null,"abstract":"<p>Monoterpene indole alkaloids (MIAs) are a large, structurally diverse class of bioactive natural products. These compounds are biosynthetically derived from a stereoselective Pictet–Spengler condensation that generates a tetrahydro-β-carboline scaffold characterized by a 3<i>S</i> stereocenter. However, a subset of MIAs contains a noncanonical 3<i>R</i> stereocenter. Here we report the basis for 3<i>R</i>-MIA biosynthesis in <i>Mitragyna speciosa</i> (kratom). We discover the presence of the iminium species (20<i>S</i>)-3-dehydrocorynantheidine, which supports isomerization of 3<i>S</i> to 3<i>R</i> via oxidation and stereoselective reduction downstream of the initial Pictet–Spengler condensation. Isotopologue feeding experiments identify the sites for downstream MIA pathway biosynthesis as well as the oxidase/reductase pair that catalyzes this epimerization. This oxidase/reductase pair has broad substrate specificity, suggesting that this pathway may be responsible for the formation of many 3<i>R</i>-MIAs and downstream spirooxindole alkaloids in kratom. The elucidation of this epimerization mechanism allows biocatalytic access to a range of pharmacologically active spirooxindole alkaloid compounds.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"3 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymatic epimerization of monoterpene indole alkaloids in kratom\",\"authors\":\"Allwin McDonald, Yoko Nakamura, Carsten Schotte, Gabriel Titchiner, Kin Lau, Ryan Alam, Adriana A. Lopes, C. Robin Buell, Sarah E. O’Connor\",\"doi\":\"10.1038/s41589-025-01970-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monoterpene indole alkaloids (MIAs) are a large, structurally diverse class of bioactive natural products. These compounds are biosynthetically derived from a stereoselective Pictet–Spengler condensation that generates a tetrahydro-β-carboline scaffold characterized by a 3<i>S</i> stereocenter. However, a subset of MIAs contains a noncanonical 3<i>R</i> stereocenter. Here we report the basis for 3<i>R</i>-MIA biosynthesis in <i>Mitragyna speciosa</i> (kratom). We discover the presence of the iminium species (20<i>S</i>)-3-dehydrocorynantheidine, which supports isomerization of 3<i>S</i> to 3<i>R</i> via oxidation and stereoselective reduction downstream of the initial Pictet–Spengler condensation. Isotopologue feeding experiments identify the sites for downstream MIA pathway biosynthesis as well as the oxidase/reductase pair that catalyzes this epimerization. This oxidase/reductase pair has broad substrate specificity, suggesting that this pathway may be responsible for the formation of many 3<i>R</i>-MIAs and downstream spirooxindole alkaloids in kratom. The elucidation of this epimerization mechanism allows biocatalytic access to a range of pharmacologically active spirooxindole alkaloid compounds.</p><figure></figure>\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41589-025-01970-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01970-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单萜吲哚生物碱(MIAs)是一类结构多样的大型生物活性天然产物。这些化合物是由立体选择性Pictet-Spengler缩合生成的,该缩合生成以3S立体中心为特征的四氢β-碳碱支架。然而,mia的一个子集包含一个非规范的3R立体中心。本文报道了米特拉特纳(Mitragyna speciosa, kratom)中3R-MIA生物合成的基础。我们发现,在初始Pictet-Spengler缩合反应下游,通过氧化和立体选择还原,支持3S到3R的异构化反应的存在(20S)-3-脱氢菊胺。同位素投料实验确定了下游MIA途径生物合成的位点以及催化这种外映体化的氧化酶/还原酶对。这种氧化酶/还原酶对具有广泛的底物特异性,这表明该途径可能负责形成许多3r - mia和下游的螺烷吲哚生物碱。这种外显异构化机制的阐明允许生物催化获得一系列具有药理活性的螺菌吲哚生物碱化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enzymatic epimerization of monoterpene indole alkaloids in kratom

Enzymatic epimerization of monoterpene indole alkaloids in kratom

Monoterpene indole alkaloids (MIAs) are a large, structurally diverse class of bioactive natural products. These compounds are biosynthetically derived from a stereoselective Pictet–Spengler condensation that generates a tetrahydro-β-carboline scaffold characterized by a 3S stereocenter. However, a subset of MIAs contains a noncanonical 3R stereocenter. Here we report the basis for 3R-MIA biosynthesis in Mitragyna speciosa (kratom). We discover the presence of the iminium species (20S)-3-dehydrocorynantheidine, which supports isomerization of 3S to 3R via oxidation and stereoselective reduction downstream of the initial Pictet–Spengler condensation. Isotopologue feeding experiments identify the sites for downstream MIA pathway biosynthesis as well as the oxidase/reductase pair that catalyzes this epimerization. This oxidase/reductase pair has broad substrate specificity, suggesting that this pathway may be responsible for the formation of many 3R-MIAs and downstream spirooxindole alkaloids in kratom. The elucidation of this epimerization mechanism allows biocatalytic access to a range of pharmacologically active spirooxindole alkaloid compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信