优化阻抗测量的ECMO早期血栓检测:一项模拟研究。

Q3 Biochemistry, Genetics and Molecular Biology
Journal of Electrical Bioimpedance Pub Date : 2025-07-01 eCollection Date: 2025-01-01 DOI:10.2478/joeb-2025-0011
Filip Slapal, Diogo F Silva, Steffen Leonhardt, Marian Walter
{"title":"优化阻抗测量的ECMO早期血栓检测:一项模拟研究。","authors":"Filip Slapal, Diogo F Silva, Steffen Leonhardt, Marian Walter","doi":"10.2478/joeb-2025-0011","DOIUrl":null,"url":null,"abstract":"<p><p>Extracorporeal oxygenation supports patients with severe cardiac or respiratory failure, with the oxygenator providing critical gas exchange. Thrombus formation in the oxygenator can impair efficiency and increase risks such as hemolysis and embolism, but existing detection methods are limited in accuracy and timeliness. This study introduces a computational bioimpedance approach for early thrombus detection that integrates advanced modeling and machine learning techniques while preserving the oxygenator's functionality. We developed a finite element model of an oxygenator to simulate bioimpedance measurements using varied electrode configurations. Neural networks optimized electrode placement and injection-measurement patterns, enhancing sensitivity to conductivity changes. A second neural network was trained on simulated data to distinguish between normal and thrombus-affected conditions, achieving an F1-score exceeding 94% in classification tasks. Simulations demonstrated the feasibility of this method, with optimized configurations significantly improving detection accuracy. The findings suggest that computational bioimpedance, combined with neural network optimization, provides a robust framework for automated thrombus detection inside an oxygenator.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"16 1","pages":"80-88"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258018/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early thrombus detection in ECMO with optimized impedance measurements: A simulative study.\",\"authors\":\"Filip Slapal, Diogo F Silva, Steffen Leonhardt, Marian Walter\",\"doi\":\"10.2478/joeb-2025-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracorporeal oxygenation supports patients with severe cardiac or respiratory failure, with the oxygenator providing critical gas exchange. Thrombus formation in the oxygenator can impair efficiency and increase risks such as hemolysis and embolism, but existing detection methods are limited in accuracy and timeliness. This study introduces a computational bioimpedance approach for early thrombus detection that integrates advanced modeling and machine learning techniques while preserving the oxygenator's functionality. We developed a finite element model of an oxygenator to simulate bioimpedance measurements using varied electrode configurations. Neural networks optimized electrode placement and injection-measurement patterns, enhancing sensitivity to conductivity changes. A second neural network was trained on simulated data to distinguish between normal and thrombus-affected conditions, achieving an F1-score exceeding 94% in classification tasks. Simulations demonstrated the feasibility of this method, with optimized configurations significantly improving detection accuracy. The findings suggest that computational bioimpedance, combined with neural network optimization, provides a robust framework for automated thrombus detection inside an oxygenator.</p>\",\"PeriodicalId\":38125,\"journal\":{\"name\":\"Journal of Electrical Bioimpedance\",\"volume\":\"16 1\",\"pages\":\"80-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258018/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Bioimpedance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/joeb-2025-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2025-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

体外氧合支持严重心脏或呼吸衰竭的患者,氧合器提供关键的气体交换。氧合器内血栓形成会降低效率,增加溶血、栓塞等风险,但现有检测方法的准确性和及时性有限。本研究介绍了一种用于早期血栓检测的计算生物阻抗方法,该方法集成了先进的建模和机器学习技术,同时保留了氧合器的功能。我们开发了一个氧合器的有限元模型来模拟使用不同电极配置的生物阻抗测量。神经网络优化了电极放置和注射测量模式,提高了对电导率变化的灵敏度。第二个神经网络在模拟数据上进行训练,以区分正常和血栓影响的情况,在分类任务中获得超过94%的f1分。仿真验证了该方法的可行性,优化后的结构显著提高了检测精度。研究结果表明,计算生物阻抗与神经网络优化相结合,为氧合器内的自动血栓检测提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early thrombus detection in ECMO with optimized impedance measurements: A simulative study.

Extracorporeal oxygenation supports patients with severe cardiac or respiratory failure, with the oxygenator providing critical gas exchange. Thrombus formation in the oxygenator can impair efficiency and increase risks such as hemolysis and embolism, but existing detection methods are limited in accuracy and timeliness. This study introduces a computational bioimpedance approach for early thrombus detection that integrates advanced modeling and machine learning techniques while preserving the oxygenator's functionality. We developed a finite element model of an oxygenator to simulate bioimpedance measurements using varied electrode configurations. Neural networks optimized electrode placement and injection-measurement patterns, enhancing sensitivity to conductivity changes. A second neural network was trained on simulated data to distinguish between normal and thrombus-affected conditions, achieving an F1-score exceeding 94% in classification tasks. Simulations demonstrated the feasibility of this method, with optimized configurations significantly improving detection accuracy. The findings suggest that computational bioimpedance, combined with neural network optimization, provides a robust framework for automated thrombus detection inside an oxygenator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信