Mohammed Zayed, Enas Elwakeel, Prehan Ezzat, Byung-Hoon Jeong
{"title":"间充质干细胞衍生的外泌体作为铁下垂的潜在治疗策略。","authors":"Mohammed Zayed, Enas Elwakeel, Prehan Ezzat, Byung-Hoon Jeong","doi":"10.1186/s13287-025-04511-2","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, a regulated type of cell death directed by iron-dependent lipid peroxidation, is associated with a variety of pathological diseases. Recent findings have highlighted the therapeutic potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in modulating ferroptosis. These nano-sized extracellular vesicles carry bioactive substances, including proteins, lipids, and microRNAs, which regulate vital pathways related to ferroptosis, such as reactive oxygen species production, glutathione metabolism, and lipid peroxidation. Preclinical studies suggest that MSC-Exos can alleviate ferroptosis-induced damage by enhancing antioxidant defenses, mitigating oxidative stress, upregulating anti-ferroptotic regulators, and suppressing lipid peroxidation. Notably, in cancer, MSC-Exos may protect non-malignant tissues from chemotherapy-induced ferroptosis. By exploiting their regenerative and immunomodulatory properties, MSC-Exos offer a promising therapeutic platform for targeting ferroptosis in diverse pathological conditions. This review summarizes the biological and functional characteristics of MSC-Exos, elucidates their roles in ferroptosis regulation across multiple disease models, and discusses current challenges and future directions for clinical translation.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"368"},"PeriodicalIF":7.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261762/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mesenchymal stem cell-derived exosomes as a potential therapeutic strategy for ferroptosis.\",\"authors\":\"Mohammed Zayed, Enas Elwakeel, Prehan Ezzat, Byung-Hoon Jeong\",\"doi\":\"10.1186/s13287-025-04511-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis, a regulated type of cell death directed by iron-dependent lipid peroxidation, is associated with a variety of pathological diseases. Recent findings have highlighted the therapeutic potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in modulating ferroptosis. These nano-sized extracellular vesicles carry bioactive substances, including proteins, lipids, and microRNAs, which regulate vital pathways related to ferroptosis, such as reactive oxygen species production, glutathione metabolism, and lipid peroxidation. Preclinical studies suggest that MSC-Exos can alleviate ferroptosis-induced damage by enhancing antioxidant defenses, mitigating oxidative stress, upregulating anti-ferroptotic regulators, and suppressing lipid peroxidation. Notably, in cancer, MSC-Exos may protect non-malignant tissues from chemotherapy-induced ferroptosis. By exploiting their regenerative and immunomodulatory properties, MSC-Exos offer a promising therapeutic platform for targeting ferroptosis in diverse pathological conditions. This review summarizes the biological and functional characteristics of MSC-Exos, elucidates their roles in ferroptosis regulation across multiple disease models, and discusses current challenges and future directions for clinical translation.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":\"16 1\",\"pages\":\"368\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261762/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-025-04511-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04511-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Mesenchymal stem cell-derived exosomes as a potential therapeutic strategy for ferroptosis.
Ferroptosis, a regulated type of cell death directed by iron-dependent lipid peroxidation, is associated with a variety of pathological diseases. Recent findings have highlighted the therapeutic potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in modulating ferroptosis. These nano-sized extracellular vesicles carry bioactive substances, including proteins, lipids, and microRNAs, which regulate vital pathways related to ferroptosis, such as reactive oxygen species production, glutathione metabolism, and lipid peroxidation. Preclinical studies suggest that MSC-Exos can alleviate ferroptosis-induced damage by enhancing antioxidant defenses, mitigating oxidative stress, upregulating anti-ferroptotic regulators, and suppressing lipid peroxidation. Notably, in cancer, MSC-Exos may protect non-malignant tissues from chemotherapy-induced ferroptosis. By exploiting their regenerative and immunomodulatory properties, MSC-Exos offer a promising therapeutic platform for targeting ferroptosis in diverse pathological conditions. This review summarizes the biological and functional characteristics of MSC-Exos, elucidates their roles in ferroptosis regulation across multiple disease models, and discusses current challenges and future directions for clinical translation.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.