Yuan Liu, Yuankun Liu, Yu Zhang, Pengpeng Zhang, Jiaheng Xie, Ning Zhao, Yi Xie, Chao Cheng, Songyun Zhao
{"title":"使用机器学习算法预测结直肠癌患者肠系膜完全切除后心力衰竭的危险因素。","authors":"Yuan Liu, Yuankun Liu, Yu Zhang, Pengpeng Zhang, Jiaheng Xie, Ning Zhao, Yi Xie, Chao Cheng, Songyun Zhao","doi":"10.1038/s41598-025-11726-z","DOIUrl":null,"url":null,"abstract":"<p><p>Following complete mesocolic excision (CME), heart failure (HF) emerges as a significant complication, exerting substantial impacts on both short-term and long-term patient prognoses. The primary objective of our investigation was to develop a machine learning model capable of discerning preoperative and intraoperative high-risk factors, facilitating the prediction of HF occurrence subsequent to CME. A cohort comprising 1158 patients diagnosed with colon cancer was enrolled in our study, encompassing 172 individuals who developed postoperative HF. We compiled 37 feature variables, spanning patient demographic traits, foundational medical histories, preoperative examination characteristics, surgery types, and intraoperative details. Four distinct machine learning algorithms-extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and k-nearest neighbor algorithm (KNN)-were employed to construct the model. The k-fold cross-validation method, ROC curve, calibration curve, decision curve analysis (DCA), and external validation were employed for comprehensive model evaluation. The XGBoost algorithm exhibited superior performance compared to the other three prediction models. Specifically, within the training set of the internal validation set, the XGBoost algorithm demonstrated an AUC value of 0.990 (0.983-0.996), accuracy of 0.929 (0.923-0.935), sensitivity of 0.983 (0.976-0.990), specificity of 0.918 (0.910-0.927), and F1 value of 0.799 (0.784-0.814). In the validation set of the internal validation set, the XGBoost algorithm recorded an AUC value of 0.941 (0.890-0.991), accuracy of 0.897 (0.882-0.911), sensitivity of 0.898 (0.860-0.937), specificity of 0.875 (0.845-0.905), and F1 value of 0.711 (0.656-0.766). The AUC value for the external validation set was 0.93, indicating robust extrapolative capabilities of the XGBoost prediction model. The HF prediction model post-CME, derived from the XGBoost machine learning algorithm in this study, attests to its elevated predictive accuracy and clinical utility.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"25441"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259990/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using machine learning algorithms to predict risk factors of heart failure after complete mesocolic excision in colorectal cancer patients.\",\"authors\":\"Yuan Liu, Yuankun Liu, Yu Zhang, Pengpeng Zhang, Jiaheng Xie, Ning Zhao, Yi Xie, Chao Cheng, Songyun Zhao\",\"doi\":\"10.1038/s41598-025-11726-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Following complete mesocolic excision (CME), heart failure (HF) emerges as a significant complication, exerting substantial impacts on both short-term and long-term patient prognoses. The primary objective of our investigation was to develop a machine learning model capable of discerning preoperative and intraoperative high-risk factors, facilitating the prediction of HF occurrence subsequent to CME. A cohort comprising 1158 patients diagnosed with colon cancer was enrolled in our study, encompassing 172 individuals who developed postoperative HF. We compiled 37 feature variables, spanning patient demographic traits, foundational medical histories, preoperative examination characteristics, surgery types, and intraoperative details. Four distinct machine learning algorithms-extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and k-nearest neighbor algorithm (KNN)-were employed to construct the model. The k-fold cross-validation method, ROC curve, calibration curve, decision curve analysis (DCA), and external validation were employed for comprehensive model evaluation. The XGBoost algorithm exhibited superior performance compared to the other three prediction models. Specifically, within the training set of the internal validation set, the XGBoost algorithm demonstrated an AUC value of 0.990 (0.983-0.996), accuracy of 0.929 (0.923-0.935), sensitivity of 0.983 (0.976-0.990), specificity of 0.918 (0.910-0.927), and F1 value of 0.799 (0.784-0.814). In the validation set of the internal validation set, the XGBoost algorithm recorded an AUC value of 0.941 (0.890-0.991), accuracy of 0.897 (0.882-0.911), sensitivity of 0.898 (0.860-0.937), specificity of 0.875 (0.845-0.905), and F1 value of 0.711 (0.656-0.766). The AUC value for the external validation set was 0.93, indicating robust extrapolative capabilities of the XGBoost prediction model. The HF prediction model post-CME, derived from the XGBoost machine learning algorithm in this study, attests to its elevated predictive accuracy and clinical utility.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"25441\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-11726-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-11726-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Using machine learning algorithms to predict risk factors of heart failure after complete mesocolic excision in colorectal cancer patients.
Following complete mesocolic excision (CME), heart failure (HF) emerges as a significant complication, exerting substantial impacts on both short-term and long-term patient prognoses. The primary objective of our investigation was to develop a machine learning model capable of discerning preoperative and intraoperative high-risk factors, facilitating the prediction of HF occurrence subsequent to CME. A cohort comprising 1158 patients diagnosed with colon cancer was enrolled in our study, encompassing 172 individuals who developed postoperative HF. We compiled 37 feature variables, spanning patient demographic traits, foundational medical histories, preoperative examination characteristics, surgery types, and intraoperative details. Four distinct machine learning algorithms-extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and k-nearest neighbor algorithm (KNN)-were employed to construct the model. The k-fold cross-validation method, ROC curve, calibration curve, decision curve analysis (DCA), and external validation were employed for comprehensive model evaluation. The XGBoost algorithm exhibited superior performance compared to the other three prediction models. Specifically, within the training set of the internal validation set, the XGBoost algorithm demonstrated an AUC value of 0.990 (0.983-0.996), accuracy of 0.929 (0.923-0.935), sensitivity of 0.983 (0.976-0.990), specificity of 0.918 (0.910-0.927), and F1 value of 0.799 (0.784-0.814). In the validation set of the internal validation set, the XGBoost algorithm recorded an AUC value of 0.941 (0.890-0.991), accuracy of 0.897 (0.882-0.911), sensitivity of 0.898 (0.860-0.937), specificity of 0.875 (0.845-0.905), and F1 value of 0.711 (0.656-0.766). The AUC value for the external validation set was 0.93, indicating robust extrapolative capabilities of the XGBoost prediction model. The HF prediction model post-CME, derived from the XGBoost machine learning algorithm in this study, attests to its elevated predictive accuracy and clinical utility.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.