{"title":"改性大麻纤维填充聚乳酸生物复合材料的细胞毒性和遗传毒性研究。","authors":"Nurhan Çevik Elen, Bünyamin Çiçek, Levent Elen, Büşra Moran, Musa Yıldırım, Yasin Kanbur","doi":"10.1177/09544119251351717","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the biocompatibility and toxicity of biodegradable composites reinforced with hemp fibers in a polylactic acid (PLA) matrix. To enhance the compatibility of hemp fibers with PLA, various polymer structures, including maleic anhydride (MA), polybutylene succinate (PBS), and thermoplastic polyurethane (TPU), were incorporated. Additionally, surface modification of hemp fibers was carried out using sodium hydroxide (NaOH) and 3-(2-aminoethylamino) propyl trimethoxy silane (APTES) to improve interfacial adhesion. The in vitro biocompatibility and genotoxicity of the produced composites were evaluated using L-929 fibroblast and CHO-K1 cell lines. In the cytotoxicity tests, cells were exposed to composite extracts for 24 h, after which viability rates were determined to assess possible toxic effects. Genotoxicity tests were performed to examine potential DNA damage induced by the composites. The results demonstrated that the hemp fiber-reinforced PLA composites exhibited high biocompatibility, with cell viability reaching up to 120%, while no DNA damage was observed in genotoxicity analyses. These findings indicate that the developed composites are non-toxic and have promising potential for biomedical applications. However, further in vivo studies are required to gain a more comprehensive understanding of their long-term biocompatibility and safety profile.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"697-705"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of cytotoxicity and genotoxicity properties of modified hemp fiber filled PLA biocomposites.\",\"authors\":\"Nurhan Çevik Elen, Bünyamin Çiçek, Levent Elen, Büşra Moran, Musa Yıldırım, Yasin Kanbur\",\"doi\":\"10.1177/09544119251351717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the biocompatibility and toxicity of biodegradable composites reinforced with hemp fibers in a polylactic acid (PLA) matrix. To enhance the compatibility of hemp fibers with PLA, various polymer structures, including maleic anhydride (MA), polybutylene succinate (PBS), and thermoplastic polyurethane (TPU), were incorporated. Additionally, surface modification of hemp fibers was carried out using sodium hydroxide (NaOH) and 3-(2-aminoethylamino) propyl trimethoxy silane (APTES) to improve interfacial adhesion. The in vitro biocompatibility and genotoxicity of the produced composites were evaluated using L-929 fibroblast and CHO-K1 cell lines. In the cytotoxicity tests, cells were exposed to composite extracts for 24 h, after which viability rates were determined to assess possible toxic effects. Genotoxicity tests were performed to examine potential DNA damage induced by the composites. The results demonstrated that the hemp fiber-reinforced PLA composites exhibited high biocompatibility, with cell viability reaching up to 120%, while no DNA damage was observed in genotoxicity analyses. These findings indicate that the developed composites are non-toxic and have promising potential for biomedical applications. However, further in vivo studies are required to gain a more comprehensive understanding of their long-term biocompatibility and safety profile.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"697-705\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251351717\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251351717","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Investigation of cytotoxicity and genotoxicity properties of modified hemp fiber filled PLA biocomposites.
This study aimed to investigate the biocompatibility and toxicity of biodegradable composites reinforced with hemp fibers in a polylactic acid (PLA) matrix. To enhance the compatibility of hemp fibers with PLA, various polymer structures, including maleic anhydride (MA), polybutylene succinate (PBS), and thermoplastic polyurethane (TPU), were incorporated. Additionally, surface modification of hemp fibers was carried out using sodium hydroxide (NaOH) and 3-(2-aminoethylamino) propyl trimethoxy silane (APTES) to improve interfacial adhesion. The in vitro biocompatibility and genotoxicity of the produced composites were evaluated using L-929 fibroblast and CHO-K1 cell lines. In the cytotoxicity tests, cells were exposed to composite extracts for 24 h, after which viability rates were determined to assess possible toxic effects. Genotoxicity tests were performed to examine potential DNA damage induced by the composites. The results demonstrated that the hemp fiber-reinforced PLA composites exhibited high biocompatibility, with cell viability reaching up to 120%, while no DNA damage was observed in genotoxicity analyses. These findings indicate that the developed composites are non-toxic and have promising potential for biomedical applications. However, further in vivo studies are required to gain a more comprehensive understanding of their long-term biocompatibility and safety profile.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.