细叶茅肌醇磷酸盐代谢酶的基因组学和转录组学综合分析。

IF 3.8 3区 生物学 Q1 PLANT SCIENCES
Planta Pub Date : 2025-07-15 DOI:10.1007/s00425-025-04770-6
Guangjie Xu, Chengfu Sun
{"title":"细叶茅肌醇磷酸盐代谢酶的基因组学和转录组学综合分析。","authors":"Guangjie Xu, Chengfu Sun","doi":"10.1007/s00425-025-04770-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>Euglena gracilis possesses a dynamic inositol metabolic network, with enzyme expression varying under different growth conditions and stressors, enabling future synthetic engineering. Inositol and its phosphate derivatives play pivotal roles in energy metabolism and cellular signaling. Although inositol was detected in Euglena gracilis (E. gracilis) decades ago, the enzymatic machinery governing its metabolic conversion remains poorly characterized. In this study, we conducted a comprehensive bioinformatic analysis of inositol phosphate-metabolizing enzymes and identified 25 enzyme entries (encompassing 35 genes) in this protist. KEGG pathway mapping revealed an active inositol metabolic network in E. gracilis. Genomic structure analysis demonstrated that most of these genes are present in multiple copies across the genome. By constructing a miniaturized genomic representation of these enzymes, we investigated their transcriptional profiles under various conditions, including photo-, hetero-, and mixotrophic growth, aerobic and anaerobic environments, light and dark exposure, and treatment with ethanol, glucose, or other chemical stressors. Our findings indicate that inositol phosphate-metabolizing enzymes exhibit differential expression and dynamic regulation depending on physiological growth conditions and external stimuli. This study establishes a foundation for future catalytic characterization and synthetic engineering of inositol-related enzymes in E. gracilis.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"262 3","pages":"52"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive genomic and transcriptomic analysis of inositol phosphate-metabolizing enzymes in Euglena gracilis.\",\"authors\":\"Guangjie Xu, Chengfu Sun\",\"doi\":\"10.1007/s00425-025-04770-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Main conclusion: </strong>Euglena gracilis possesses a dynamic inositol metabolic network, with enzyme expression varying under different growth conditions and stressors, enabling future synthetic engineering. Inositol and its phosphate derivatives play pivotal roles in energy metabolism and cellular signaling. Although inositol was detected in Euglena gracilis (E. gracilis) decades ago, the enzymatic machinery governing its metabolic conversion remains poorly characterized. In this study, we conducted a comprehensive bioinformatic analysis of inositol phosphate-metabolizing enzymes and identified 25 enzyme entries (encompassing 35 genes) in this protist. KEGG pathway mapping revealed an active inositol metabolic network in E. gracilis. Genomic structure analysis demonstrated that most of these genes are present in multiple copies across the genome. By constructing a miniaturized genomic representation of these enzymes, we investigated their transcriptional profiles under various conditions, including photo-, hetero-, and mixotrophic growth, aerobic and anaerobic environments, light and dark exposure, and treatment with ethanol, glucose, or other chemical stressors. Our findings indicate that inositol phosphate-metabolizing enzymes exhibit differential expression and dynamic regulation depending on physiological growth conditions and external stimuli. This study establishes a foundation for future catalytic characterization and synthetic engineering of inositol-related enzymes in E. gracilis.</p>\",\"PeriodicalId\":20177,\"journal\":{\"name\":\"Planta\",\"volume\":\"262 3\",\"pages\":\"52\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planta\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00425-025-04770-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04770-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

主要结论:细叶茅具有一个动态的肌醇代谢网络,在不同的生长条件和胁迫条件下,其酶的表达会发生变化,为未来的合成工程提供了可能。肌醇及其磷酸盐衍生物在能量代谢和细胞信号传导中起着关键作用。虽然肌醇在几十年前就被检测到,但控制其代谢转化的酶机制仍然很不清楚。在这项研究中,我们对肌醇磷酸代谢酶进行了全面的生物信息学分析,并在该原生生物中鉴定了25个酶入口(包括35个基因)。KEGG通路图谱揭示了薄叶菊中活跃的肌醇代谢网络。基因组结构分析表明,大多数这些基因存在于整个基因组的多个拷贝中。通过构建这些酶的微型基因组表示,我们研究了它们在各种条件下的转录谱,包括光、异养和混合营养生长,有氧和厌氧环境,光照和黑暗暴露,以及乙醇、葡萄糖或其他化学应激源的处理。我们的研究结果表明,肌醇磷酸代谢酶根据生理生长条件和外界刺激表现出差异表达和动态调节。本研究为细叶菊肌醇相关酶的催化表征和工程合成奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive genomic and transcriptomic analysis of inositol phosphate-metabolizing enzymes in Euglena gracilis.

Main conclusion: Euglena gracilis possesses a dynamic inositol metabolic network, with enzyme expression varying under different growth conditions and stressors, enabling future synthetic engineering. Inositol and its phosphate derivatives play pivotal roles in energy metabolism and cellular signaling. Although inositol was detected in Euglena gracilis (E. gracilis) decades ago, the enzymatic machinery governing its metabolic conversion remains poorly characterized. In this study, we conducted a comprehensive bioinformatic analysis of inositol phosphate-metabolizing enzymes and identified 25 enzyme entries (encompassing 35 genes) in this protist. KEGG pathway mapping revealed an active inositol metabolic network in E. gracilis. Genomic structure analysis demonstrated that most of these genes are present in multiple copies across the genome. By constructing a miniaturized genomic representation of these enzymes, we investigated their transcriptional profiles under various conditions, including photo-, hetero-, and mixotrophic growth, aerobic and anaerobic environments, light and dark exposure, and treatment with ethanol, glucose, or other chemical stressors. Our findings indicate that inositol phosphate-metabolizing enzymes exhibit differential expression and dynamic regulation depending on physiological growth conditions and external stimuli. This study establishes a foundation for future catalytic characterization and synthetic engineering of inositol-related enzymes in E. gracilis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Planta
Planta 生物-植物科学
CiteScore
7.20
自引率
2.30%
发文量
217
审稿时长
2.3 months
期刊介绍: Planta publishes timely and substantial articles on all aspects of plant biology. We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信