在多靶点芯片上使用快速高效qPCR检测的传染病诊断装置:理想qPCR。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Kiran Shrestha, Seongryeong Kim, Jiyeon Han, Meng Zhang, Sajjan Parajuli, Gyoujin Cho
{"title":"在多靶点芯片上使用快速高效qPCR检测的传染病诊断装置:理想qPCR。","authors":"Kiran Shrestha, Seongryeong Kim, Jiyeon Han, Meng Zhang, Sajjan Parajuli, Gyoujin Cho","doi":"10.1038/s41378-025-00972-w","DOIUrl":null,"url":null,"abstract":"<p><p>Photothermal conversion-based quantitative polymerase chain reaction (qPCR) is a fast, sensitive, and accurate method to diagnose infectious diseases. However, they have bottlenecks in test throughput scalability, cumbersome oil cover, and a lack of multi-target capability. Here, the authors present an infectious disease diagnostic device with rapid photothermal conversion-based efficient reverse transcription (RT)-qPCR assays on a multi-target chip (idream-qPCR). The authors innovate an off-axis mirror-based three-channel fluorescence intensity measurement method, enabling concurrent non-contact temperature control of 16 mini-well reaction chambers for qPCRs without the necessity of actuating parts. A transparent adhesive film on a graphite mixed polydimethylsiloxane (PDMS)-based PCR chip with mini-wells avoids contamination and bubbles to achieve 16 RT-qPCRs (40 photothermal cycles) within 17 min. Finally, idream-qPCR is validated by amplifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N1 72 bp, RdRP 100 bp, and E 113 bp genes using Fluorescein amidites (FAM), Carboxytetramethylrhodamine (TAMRA), and Cyanine5 (CY5) fluorescent dyes, respectively, with 102.5% efficiency and a limit-of-detection (LoD) equivalent to 0.85 copies/µL. idream-qPCR can be efficiently used to prevent the spread of infectious diseases.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"143"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259970/pdf/","citationCount":"0","resultStr":"{\"title\":\"Infectious disease diagnostic device using rapid and efficient qPCR assays on a multi-target chip: idream-qPCR.\",\"authors\":\"Kiran Shrestha, Seongryeong Kim, Jiyeon Han, Meng Zhang, Sajjan Parajuli, Gyoujin Cho\",\"doi\":\"10.1038/s41378-025-00972-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photothermal conversion-based quantitative polymerase chain reaction (qPCR) is a fast, sensitive, and accurate method to diagnose infectious diseases. However, they have bottlenecks in test throughput scalability, cumbersome oil cover, and a lack of multi-target capability. Here, the authors present an infectious disease diagnostic device with rapid photothermal conversion-based efficient reverse transcription (RT)-qPCR assays on a multi-target chip (idream-qPCR). The authors innovate an off-axis mirror-based three-channel fluorescence intensity measurement method, enabling concurrent non-contact temperature control of 16 mini-well reaction chambers for qPCRs without the necessity of actuating parts. A transparent adhesive film on a graphite mixed polydimethylsiloxane (PDMS)-based PCR chip with mini-wells avoids contamination and bubbles to achieve 16 RT-qPCRs (40 photothermal cycles) within 17 min. Finally, idream-qPCR is validated by amplifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N1 72 bp, RdRP 100 bp, and E 113 bp genes using Fluorescein amidites (FAM), Carboxytetramethylrhodamine (TAMRA), and Cyanine5 (CY5) fluorescent dyes, respectively, with 102.5% efficiency and a limit-of-detection (LoD) equivalent to 0.85 copies/µL. idream-qPCR can be efficiently used to prevent the spread of infectious diseases.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"143\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259970/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-025-00972-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00972-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

基于光热转换的定量聚合酶链反应(qPCR)是一种快速、灵敏、准确的传染病诊断方法。然而,它们在测试吞吐量可扩展性、繁琐的油层覆盖和缺乏多目标能力方面存在瓶颈。在这里,作者提出了一种传染病诊断装置,该装置在多靶点芯片上进行基于光热转换的快速高效反转录(RT)-qPCR检测(iddream -qPCR)。作者创新了一种基于离轴反射镜的三通道荧光强度测量方法,无需驱动部件即可同时对16个qpcr微孔反应室进行非接触式温度控制。在基于石墨混合聚二甲基硅氧烷(PDMS)的PCR芯片上涂上透明胶膜,并带有微孔,可避免污染和气泡,在17分钟内获得16个rt - qpcr(40个光热循环)。最后,利用荧光素酰胺(FAM)、羧基四甲基罗丹明(TAMRA)和氰胺5 (CY5)荧光染料分别扩增严重急性呼吸综合征冠状病毒2 (SARS-CoV-2) N1 72 bp、RdRP 100 bp和e113 bp基因,验证了idream-qPCR,效率为102.5%,检出限(LoD)相当于0.85拷贝/µL。理想qpcr可以有效地用于预防传染病的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infectious disease diagnostic device using rapid and efficient qPCR assays on a multi-target chip: idream-qPCR.

Photothermal conversion-based quantitative polymerase chain reaction (qPCR) is a fast, sensitive, and accurate method to diagnose infectious diseases. However, they have bottlenecks in test throughput scalability, cumbersome oil cover, and a lack of multi-target capability. Here, the authors present an infectious disease diagnostic device with rapid photothermal conversion-based efficient reverse transcription (RT)-qPCR assays on a multi-target chip (idream-qPCR). The authors innovate an off-axis mirror-based three-channel fluorescence intensity measurement method, enabling concurrent non-contact temperature control of 16 mini-well reaction chambers for qPCRs without the necessity of actuating parts. A transparent adhesive film on a graphite mixed polydimethylsiloxane (PDMS)-based PCR chip with mini-wells avoids contamination and bubbles to achieve 16 RT-qPCRs (40 photothermal cycles) within 17 min. Finally, idream-qPCR is validated by amplifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N1 72 bp, RdRP 100 bp, and E 113 bp genes using Fluorescein amidites (FAM), Carboxytetramethylrhodamine (TAMRA), and Cyanine5 (CY5) fluorescent dyes, respectively, with 102.5% efficiency and a limit-of-detection (LoD) equivalent to 0.85 copies/µL. idream-qPCR can be efficiently used to prevent the spread of infectious diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信