激光热退火诱导自偏置磁电复合材料的强磁-电-机械耦合效应。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Dan Xian, Yanan Zhao, Yongjun Du, Yiwei Xu, Jiacheng Qiao, Jingen Wu, Qijing Lin, Ming Liu, Zhuangde Jiang
{"title":"激光热退火诱导自偏置磁电复合材料的强磁-电-机械耦合效应。","authors":"Dan Xian, Yanan Zhao, Yongjun Du, Yiwei Xu, Jiacheng Qiao, Jingen Wu, Qijing Lin, Ming Liu, Zhuangde Jiang","doi":"10.1038/s41378-025-00875-w","DOIUrl":null,"url":null,"abstract":"<p><p>The development of advanced magnetoelectric (ME) composites necessitates high-performance materials that are capable of achieving high levels of ME coupling, minimal magnetic loss, and absence or limited reliance on external excitation sources. In this paper, a (2-2) connectivity ME laminate integrates multiple layers of FeSiB alloy (Metglas) and Pb (Mg, Nb) O<sub>3</sub>-PbTiO<sub>3</sub> (PMN-PT) single crystal, achieving a remarkable ME coupling coefficient of 2033.4 V/Oe·cm (sevenfold rise) by laser thermal annealing treatment. Here, the laser-induced nanostructures on Metglas, with an oxidized insulation layer and soft and hard magnetic dipole layer improve the Magneto-electric-mechanical coupling with a mechanical quality factor (Q<sub>m</sub>) exceeding 350. More importantly, the interaction between amorphous and nanocrystalline dipoles triggers an Exchange Bias (EB) effect, leading to a self-biasing performance of 67.45 V/Oe·cm. Furthermore, the composite exhibits an excellent passive DC magnetic detection limit of 22 nT, and an improved weak AC magnetic detection limit down to 383 fT. These explorations offer the potential to enhance passive current measurement, and underwater communication, extend weak magnetic positioning and brain magnetic detection.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"142"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highly magneto-electric-mechanical coupling effect in self-biased magnetoelectric composite induced by laser thermal annealing.\",\"authors\":\"Dan Xian, Yanan Zhao, Yongjun Du, Yiwei Xu, Jiacheng Qiao, Jingen Wu, Qijing Lin, Ming Liu, Zhuangde Jiang\",\"doi\":\"10.1038/s41378-025-00875-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of advanced magnetoelectric (ME) composites necessitates high-performance materials that are capable of achieving high levels of ME coupling, minimal magnetic loss, and absence or limited reliance on external excitation sources. In this paper, a (2-2) connectivity ME laminate integrates multiple layers of FeSiB alloy (Metglas) and Pb (Mg, Nb) O<sub>3</sub>-PbTiO<sub>3</sub> (PMN-PT) single crystal, achieving a remarkable ME coupling coefficient of 2033.4 V/Oe·cm (sevenfold rise) by laser thermal annealing treatment. Here, the laser-induced nanostructures on Metglas, with an oxidized insulation layer and soft and hard magnetic dipole layer improve the Magneto-electric-mechanical coupling with a mechanical quality factor (Q<sub>m</sub>) exceeding 350. More importantly, the interaction between amorphous and nanocrystalline dipoles triggers an Exchange Bias (EB) effect, leading to a self-biasing performance of 67.45 V/Oe·cm. Furthermore, the composite exhibits an excellent passive DC magnetic detection limit of 22 nT, and an improved weak AC magnetic detection limit down to 383 fT. These explorations offer the potential to enhance passive current measurement, and underwater communication, extend weak magnetic positioning and brain magnetic detection.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"142\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-025-00875-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00875-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

先进磁电(ME)复合材料的发展需要高性能材料,能够实现高水平的磁电耦合,最小的磁损耗,并且不需要或有限地依赖外部激励源。本文采用(2-2)连接ME层合板将多层FeSiB合金(Metglas)和Pb (Mg, Nb) O3-PbTiO3 (PMN-PT)单晶集成在一起,通过激光热退火处理获得了2033.4 V/Oe·cm的ME耦合系数(提高了7倍)。在metglass上的激光诱导纳米结构中,氧化绝缘层和软硬磁偶极子层改善了磁-电-机械耦合,机械质量因子(Qm)超过350。更重要的是,非晶和纳米晶偶极子之间的相互作用引发了交换偏置(EB)效应,导致自偏置性能达到67.45 V/Oe·cm。此外,该复合材料具有出色的无源直流磁检测极限22 nT,改进的弱交流磁检测极限低至383 fT。这些探索为增强无源电流测量、水下通信、扩展弱磁定位和脑磁检测提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly magneto-electric-mechanical coupling effect in self-biased magnetoelectric composite induced by laser thermal annealing.

The development of advanced magnetoelectric (ME) composites necessitates high-performance materials that are capable of achieving high levels of ME coupling, minimal magnetic loss, and absence or limited reliance on external excitation sources. In this paper, a (2-2) connectivity ME laminate integrates multiple layers of FeSiB alloy (Metglas) and Pb (Mg, Nb) O3-PbTiO3 (PMN-PT) single crystal, achieving a remarkable ME coupling coefficient of 2033.4 V/Oe·cm (sevenfold rise) by laser thermal annealing treatment. Here, the laser-induced nanostructures on Metglas, with an oxidized insulation layer and soft and hard magnetic dipole layer improve the Magneto-electric-mechanical coupling with a mechanical quality factor (Qm) exceeding 350. More importantly, the interaction between amorphous and nanocrystalline dipoles triggers an Exchange Bias (EB) effect, leading to a self-biasing performance of 67.45 V/Oe·cm. Furthermore, the composite exhibits an excellent passive DC magnetic detection limit of 22 nT, and an improved weak AC magnetic detection limit down to 383 fT. These explorations offer the potential to enhance passive current measurement, and underwater communication, extend weak magnetic positioning and brain magnetic detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信