{"title":"基于互信息生成图卷积网络的功能MRI阿尔茨海默病分类。","authors":"Yinghua Fu, Li Jiang, John Detre, Ze Wang","doi":"10.1177/13872877251350306","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundHigh-order cognitive functions depend on collaborative actions and information exchange between multiple brain regions. These inter-regional interactions can be characterized by mutual information (MI). Alzheimer's disease (AD) is known to affect many high-order cognitive functions, suggesting an alteration to inter-regional MI, which remains unstudied.ObjectiveTo examine whether inter-regional MI can effectively distinguish different stages of AD from normal control (NC) through a connectome-based graph convolutional network (GCN).MethodsMI was calculated between the mean time series of each pair of brain regions, forming the connectome which was input to a multi-level connectome based GCN (MLC-GCN) to predict the different stages of AD and NC. The spatio-temporal feature extraction in MLC-GCN was used to capture multi-level functional connectivity patterns generating connectomes. The GCN predictor learns and optimizes graph representations at each level, concatenating the representations for final classification. We validated our model on 552 subjects from ADNI and OASIS3. The MI-based model was compared to models with several different connectomes defined by Kullback-Leibler divergence, cross-entropy, cross-sample entropy, and correlation coefficient. Model performance was evaluated using 5-fold cross-validation.ResultsThe MI-based connectome achieved the highest prediction performance for both ADNI2 and OASIS3 where it's accuracy/Area Under the Curve/F1 were 87.72%/0.96/0.88 and 84.11%/0.96/0.91 respectively. Model visualization revealed that prominent MI features located in temporal, prefrontal, and parietal cortices.ConclusionsMI-based connectomes can reliably differentiate NC, mild cognitive impairment and AD. Compared to other four measures, MI demonstrated the best performance. The model should be further tested with other independent datasets.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877251350306"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alzheimer's disease classification using mutual information generated graph convolutional network for functional MRI.\",\"authors\":\"Yinghua Fu, Li Jiang, John Detre, Ze Wang\",\"doi\":\"10.1177/13872877251350306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundHigh-order cognitive functions depend on collaborative actions and information exchange between multiple brain regions. These inter-regional interactions can be characterized by mutual information (MI). Alzheimer's disease (AD) is known to affect many high-order cognitive functions, suggesting an alteration to inter-regional MI, which remains unstudied.ObjectiveTo examine whether inter-regional MI can effectively distinguish different stages of AD from normal control (NC) through a connectome-based graph convolutional network (GCN).MethodsMI was calculated between the mean time series of each pair of brain regions, forming the connectome which was input to a multi-level connectome based GCN (MLC-GCN) to predict the different stages of AD and NC. The spatio-temporal feature extraction in MLC-GCN was used to capture multi-level functional connectivity patterns generating connectomes. The GCN predictor learns and optimizes graph representations at each level, concatenating the representations for final classification. We validated our model on 552 subjects from ADNI and OASIS3. The MI-based model was compared to models with several different connectomes defined by Kullback-Leibler divergence, cross-entropy, cross-sample entropy, and correlation coefficient. Model performance was evaluated using 5-fold cross-validation.ResultsThe MI-based connectome achieved the highest prediction performance for both ADNI2 and OASIS3 where it's accuracy/Area Under the Curve/F1 were 87.72%/0.96/0.88 and 84.11%/0.96/0.91 respectively. Model visualization revealed that prominent MI features located in temporal, prefrontal, and parietal cortices.ConclusionsMI-based connectomes can reliably differentiate NC, mild cognitive impairment and AD. Compared to other four measures, MI demonstrated the best performance. The model should be further tested with other independent datasets.</p>\",\"PeriodicalId\":14929,\"journal\":{\"name\":\"Journal of Alzheimer's Disease\",\"volume\":\" \",\"pages\":\"13872877251350306\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/13872877251350306\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877251350306","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Alzheimer's disease classification using mutual information generated graph convolutional network for functional MRI.
BackgroundHigh-order cognitive functions depend on collaborative actions and information exchange between multiple brain regions. These inter-regional interactions can be characterized by mutual information (MI). Alzheimer's disease (AD) is known to affect many high-order cognitive functions, suggesting an alteration to inter-regional MI, which remains unstudied.ObjectiveTo examine whether inter-regional MI can effectively distinguish different stages of AD from normal control (NC) through a connectome-based graph convolutional network (GCN).MethodsMI was calculated between the mean time series of each pair of brain regions, forming the connectome which was input to a multi-level connectome based GCN (MLC-GCN) to predict the different stages of AD and NC. The spatio-temporal feature extraction in MLC-GCN was used to capture multi-level functional connectivity patterns generating connectomes. The GCN predictor learns and optimizes graph representations at each level, concatenating the representations for final classification. We validated our model on 552 subjects from ADNI and OASIS3. The MI-based model was compared to models with several different connectomes defined by Kullback-Leibler divergence, cross-entropy, cross-sample entropy, and correlation coefficient. Model performance was evaluated using 5-fold cross-validation.ResultsThe MI-based connectome achieved the highest prediction performance for both ADNI2 and OASIS3 where it's accuracy/Area Under the Curve/F1 were 87.72%/0.96/0.88 and 84.11%/0.96/0.91 respectively. Model visualization revealed that prominent MI features located in temporal, prefrontal, and parietal cortices.ConclusionsMI-based connectomes can reliably differentiate NC, mild cognitive impairment and AD. Compared to other four measures, MI demonstrated the best performance. The model should be further tested with other independent datasets.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.