{"title":"硫酸软骨素a -硒纳米颗粒通过AMPK-mTOR途径激活自噬,缓解氧化应激和线粒体功能障碍,修复大骨节病软骨细胞","authors":"Huan Deng, Lichun Qiao, Yude Jiang, Abebe Feyissa Amhare, Jing Han","doi":"10.1007/s12011-025-04732-9","DOIUrl":null,"url":null,"abstract":"<p><p>Kashin-Beck disease (KBD) is a chronic osteoarticular disease. Chondroitin sulfate A-selenium nanoparticles (CSA-SeNP), a polysaccharide-based nanoparticle, have shown promise in facilitating cartilage repair, but the mechanism remains unclear. Given our previous findings of downregulated AMPK-mTOR pathway and autophagy in KBD chondrocytes, this study explored the effects of CSA-SeNP on the AMPK-mTOR pathway and autophagy levels in KBD chondrocytes. KBD chondrocytes were treated with CSA-SeNP and AMPK inhibitors alone or in combination. We found that CSA-SeNP promoted autolysosome content and autophagic flux and upregulated the AMPK-mTOR pathway and autophagy markers, while reducing apoptosis in KBD chondrocytes. It effectively alleviated oxidative stress, as evidenced by decreased ROS level and MDA concentration, along with increased activities of antioxidant enzymes (SOD, CAT, and T-AOC). Concurrently, it also improved mitochondrial function, including elevated ATP content, enhanced SDH and ATPase activities, and restored mitochondrial membrane potential. However, co-treatment of KBD chondrocytes with CSA-SeNP and AMPK inhibitor resulted in levels of autolysosome content, autophagic flow, AMPK-mTOR pathway activity, autophagy markers, apoptosis, oxidative stress, and mitochondrial function that were intermediate between those observed with respective treatment with CSA-SeNP or AMPK inhibitor. In summary, CSA-SeNP could effectively activate AMPK-mTOR pathway to promote autophagy process, reduce oxidative stress and apoptosis, and improve mitochondrial function, thereby repairing KBD chondrocytes. This study may provide new insights into the potential of CSA-SeNP as a therapeutic agent for KBD.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chondroitin Sulfate A-Selenium Nanoparticles Activate Autophagy Through the AMPK-mTOR Pathway to Alleviate Oxidative Stress and Mitochondrial Dysfunction to Repair Kashin-Beck Disease Chondrocytes.\",\"authors\":\"Huan Deng, Lichun Qiao, Yude Jiang, Abebe Feyissa Amhare, Jing Han\",\"doi\":\"10.1007/s12011-025-04732-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kashin-Beck disease (KBD) is a chronic osteoarticular disease. Chondroitin sulfate A-selenium nanoparticles (CSA-SeNP), a polysaccharide-based nanoparticle, have shown promise in facilitating cartilage repair, but the mechanism remains unclear. Given our previous findings of downregulated AMPK-mTOR pathway and autophagy in KBD chondrocytes, this study explored the effects of CSA-SeNP on the AMPK-mTOR pathway and autophagy levels in KBD chondrocytes. KBD chondrocytes were treated with CSA-SeNP and AMPK inhibitors alone or in combination. We found that CSA-SeNP promoted autolysosome content and autophagic flux and upregulated the AMPK-mTOR pathway and autophagy markers, while reducing apoptosis in KBD chondrocytes. It effectively alleviated oxidative stress, as evidenced by decreased ROS level and MDA concentration, along with increased activities of antioxidant enzymes (SOD, CAT, and T-AOC). Concurrently, it also improved mitochondrial function, including elevated ATP content, enhanced SDH and ATPase activities, and restored mitochondrial membrane potential. However, co-treatment of KBD chondrocytes with CSA-SeNP and AMPK inhibitor resulted in levels of autolysosome content, autophagic flow, AMPK-mTOR pathway activity, autophagy markers, apoptosis, oxidative stress, and mitochondrial function that were intermediate between those observed with respective treatment with CSA-SeNP or AMPK inhibitor. In summary, CSA-SeNP could effectively activate AMPK-mTOR pathway to promote autophagy process, reduce oxidative stress and apoptosis, and improve mitochondrial function, thereby repairing KBD chondrocytes. This study may provide new insights into the potential of CSA-SeNP as a therapeutic agent for KBD.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-025-04732-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-025-04732-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chondroitin Sulfate A-Selenium Nanoparticles Activate Autophagy Through the AMPK-mTOR Pathway to Alleviate Oxidative Stress and Mitochondrial Dysfunction to Repair Kashin-Beck Disease Chondrocytes.
Kashin-Beck disease (KBD) is a chronic osteoarticular disease. Chondroitin sulfate A-selenium nanoparticles (CSA-SeNP), a polysaccharide-based nanoparticle, have shown promise in facilitating cartilage repair, but the mechanism remains unclear. Given our previous findings of downregulated AMPK-mTOR pathway and autophagy in KBD chondrocytes, this study explored the effects of CSA-SeNP on the AMPK-mTOR pathway and autophagy levels in KBD chondrocytes. KBD chondrocytes were treated with CSA-SeNP and AMPK inhibitors alone or in combination. We found that CSA-SeNP promoted autolysosome content and autophagic flux and upregulated the AMPK-mTOR pathway and autophagy markers, while reducing apoptosis in KBD chondrocytes. It effectively alleviated oxidative stress, as evidenced by decreased ROS level and MDA concentration, along with increased activities of antioxidant enzymes (SOD, CAT, and T-AOC). Concurrently, it also improved mitochondrial function, including elevated ATP content, enhanced SDH and ATPase activities, and restored mitochondrial membrane potential. However, co-treatment of KBD chondrocytes with CSA-SeNP and AMPK inhibitor resulted in levels of autolysosome content, autophagic flow, AMPK-mTOR pathway activity, autophagy markers, apoptosis, oxidative stress, and mitochondrial function that were intermediate between those observed with respective treatment with CSA-SeNP or AMPK inhibitor. In summary, CSA-SeNP could effectively activate AMPK-mTOR pathway to promote autophagy process, reduce oxidative stress and apoptosis, and improve mitochondrial function, thereby repairing KBD chondrocytes. This study may provide new insights into the potential of CSA-SeNP as a therapeutic agent for KBD.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.