{"title":"半月板挤压下膝关节生物力学实时预测的几何深度学习模型。","authors":"Xiaokang Ma, Jinhuang Xu, Jie Fu, Qiang Liu","doi":"10.1007/s10439-025-03798-9","DOIUrl":null,"url":null,"abstract":"<div><p>Meniscal extrusion (ME) has been identified as a key factor contributing to knee joint dysfunction and osteoarthritis progression. Traditional finite element analysis (FEA) methods, while accurate, are computationally expensive and time-consuming, limiting their application for real-time clinical assessments and large-scale studies. This study proposes a geometric deep learning (GDL) model to predict the biomechanical responses of knee joint soft tissues, specifically focusing on the effects of varying degrees of meniscal extrusion. The model, trained on finite element analysis (FEA)-derived data and leveraging advanced AI algorithms, significantly reduces computational time while maintaining high prediction accuracy. Validation against FEA results demonstrated that the GDL model reliably predicts stress and displacement distributions, with key performance metrics including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Percent Error at Peak Location (PEatPEAK), and Percent Error in Peak Value (PEinPEAK). Compared to conventional FEA workflows, the GDL model eliminates time-consuming preprocessing steps, enabling real-time or near-real-time biomechanical assessments. This innovation provides rapid insights into knee joint mechanics, facilitating clinical decision-making, surgical planning, and personalized rehabilitation strategies. The findings underscore the potential of AI-driven approaches to revolutionize biomechanical research and clinical practice, offering scalable and personalized solutions for joint mechanics analysis. </p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"53 10","pages":"2503 - 2512"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Geometric Deep Learning Model for Real-Time Prediction of Knee Joint Biomechanics Under Meniscal Extrusion\",\"authors\":\"Xiaokang Ma, Jinhuang Xu, Jie Fu, Qiang Liu\",\"doi\":\"10.1007/s10439-025-03798-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Meniscal extrusion (ME) has been identified as a key factor contributing to knee joint dysfunction and osteoarthritis progression. Traditional finite element analysis (FEA) methods, while accurate, are computationally expensive and time-consuming, limiting their application for real-time clinical assessments and large-scale studies. This study proposes a geometric deep learning (GDL) model to predict the biomechanical responses of knee joint soft tissues, specifically focusing on the effects of varying degrees of meniscal extrusion. The model, trained on finite element analysis (FEA)-derived data and leveraging advanced AI algorithms, significantly reduces computational time while maintaining high prediction accuracy. Validation against FEA results demonstrated that the GDL model reliably predicts stress and displacement distributions, with key performance metrics including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Percent Error at Peak Location (PEatPEAK), and Percent Error in Peak Value (PEinPEAK). Compared to conventional FEA workflows, the GDL model eliminates time-consuming preprocessing steps, enabling real-time or near-real-time biomechanical assessments. This innovation provides rapid insights into knee joint mechanics, facilitating clinical decision-making, surgical planning, and personalized rehabilitation strategies. The findings underscore the potential of AI-driven approaches to revolutionize biomechanical research and clinical practice, offering scalable and personalized solutions for joint mechanics analysis. </p></div>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\"53 10\",\"pages\":\"2503 - 2512\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10439-025-03798-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-025-03798-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Geometric Deep Learning Model for Real-Time Prediction of Knee Joint Biomechanics Under Meniscal Extrusion
Meniscal extrusion (ME) has been identified as a key factor contributing to knee joint dysfunction and osteoarthritis progression. Traditional finite element analysis (FEA) methods, while accurate, are computationally expensive and time-consuming, limiting their application for real-time clinical assessments and large-scale studies. This study proposes a geometric deep learning (GDL) model to predict the biomechanical responses of knee joint soft tissues, specifically focusing on the effects of varying degrees of meniscal extrusion. The model, trained on finite element analysis (FEA)-derived data and leveraging advanced AI algorithms, significantly reduces computational time while maintaining high prediction accuracy. Validation against FEA results demonstrated that the GDL model reliably predicts stress and displacement distributions, with key performance metrics including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Percent Error at Peak Location (PEatPEAK), and Percent Error in Peak Value (PEinPEAK). Compared to conventional FEA workflows, the GDL model eliminates time-consuming preprocessing steps, enabling real-time or near-real-time biomechanical assessments. This innovation provides rapid insights into knee joint mechanics, facilitating clinical decision-making, surgical planning, and personalized rehabilitation strategies. The findings underscore the potential of AI-driven approaches to revolutionize biomechanical research and clinical practice, offering scalable and personalized solutions for joint mechanics analysis.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.